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Abstract In this paper we examine the possibility of directly predicting passive tracer dynamics from flow
fields. We use a two-vertical-mode model for generating flows ranging from low to high Rossby numbers and
advect the passive tracer with such flows. While typically tracer dynamics are obtained by time integrating a
tracer advection equation, here the emphasis is on predicting the tracer dynamics from the flow field. We
experiment with popular architectures such as Autoencoder, UNet, and GAN, and also develop a novel model,
that we call LoConv, to make predictions. The LoConv model uses custom Local Convolution layers that allows
convolution with spatially varying weights and this model outperforms usually used architectures such as
Autoencoder, UNet, and GAN based on various metrics. Autoencoders with very few trainable parameters were
unsuccessful in making good predictions even at large-scales. GAN and UNet predictions were biased towards
large-scale features, unfavorable for capturing small-scale tracer dispersion, especially at high Rossby numbers.
Overall, the LoConv model with some physics-informed training produced the best fine-scale tracer predictions,
along with tracer flux and related derived quantities. More broadly, the results of this study point towards
successful direct ways of predicting tracer fields from the flow, overcoming the computational cost of long
numerical integration of tracer advection equations.

Plain Language Summary Oceanic tracers such as dissolved oxygen and carbon are important from
a climate and ecological perspective. Typically these tracers are obtained computationally by integrating
differential equations along with the flow in ocean models, which is computationally expensive and time-
consuming. In this study we explore the possibility of using deep learning tools to make predictions about
tracers. We trained neural network models to predict tracers from flow generated in different regimes, similar to
oceanic flows whose scales vary from hundreds of kilometers to a kilometer. We experiment with some popular
architectures and also develop some new neural net algorithms to make these predictions, with the aim of
accurately predicting fine-scale tracer features. This makes analysis of tracer fields fast and highly efficient, by
instantaneously obtaining tracer predictions instead of waiting for long computations. With these experiments,
we come to a better understanding of the strengths and weaknesses of the various neural network architectures.
Our developed model is particularly seen to make excellent fine-scale tracer predictions, outperforming popular
architectures in various metrics.

1. Introduction

The transport and mixing of oceanic tracers such as heat, salinity, or dissolved nutrients like oxygen, carbon, etc.
is determined by the oceanic flow. Oceanic tracers play a key role in ocean ecology, climate change, and the
economy. More than 10% of ocean volume has hypoxic water (Bianchi et al., 2012) or water with ecologically
stressful low concentration of oxygen, and so the transport and ventilation of oxygen tracer become important for
the survival of species with such habitats. Ocean ventilation and transport of oxygen were studied by Gnana-
desikan et al. (2013), where they looked at the effect of changing tracer diffusivity on the vertical and lateral
mixing of oxygen. Another anthropogenic tracer, carbon, plays an important role for both marine life and climate.
Oceans absorb a quarter of the total carbon produced by humans, slowing down global warming at the cost of
decreasing pH and disturbing chemical balance in the ocean (Friedlingstein et al., 2022). The relationship between
ocean flow and uptake of carbon was studied by Gnanadesikan et al. (2015). They highlight the importance of
spatial variation of tracer diffusivity and the impact of increasing carbon dioxide levels on ocean carbon uptake.
Similar studies have explored the uptake of other tracers that impact climate, such as chlorofluorocarbons for
example, (Booth & Kamenkovich, 2008). More recently, Chouksey et al. (2022) showed that an increase in the
isopycnal diffusivity, that is, diffusivity along fixed density surfaces, weakens both Atlantic residual overturning
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circulation as well as the Antarctic Circumpolar Current. Further connections between isopycnal diffusivity and
different climate indices such as El Nino Southern Oscillations, North Pacific Gyre Oscillation, Atlantic Mul-
tidecadal Oscillation, Pacific Decadal Oscillation, and Dipole Mode Index were pointed out by Busecke and
Abernathey (2019). These broad sets of studies emphasize the need to better understand and model the dispersion
of various kinds of oceanic tracers, with an eye on improving their parametrizations in coarse resolution models.

The stirring action of oceanic flows on tracers is closely dependent on the scale at consideration. Horizontal length
scales ranging from O(100) k.m. to O(10) k.m. are referred to as mesoscales. The geostrophically and hydro-
statically balanced eddies in this scale regime contain about 90% of the oceanic flow kinetic energy (Ferrari &
Wunsch, 2009; Richardson, 2008; Warren & Wunsch, 1981). Consequently, lateral stirring of tracers at meso-
scales have been extensively studied using in situ tracer release and float dispersion experiments, satellite
altimetry, and ocean models (Abernathey & Marshall, 2013; Holloway, 1986; J. R. Ledwell et al., 1993; Klocker
& Abernathey, 2014; LaCasce et al., 2014; J. Ledwell et al., 2000; Zhurbas & Oh, 2004). Scales smaller than 10 k.
m. falls within the regime of submesoscale and are characterized by departure in their dynamics from balance
constraints. Internal gravity waves and other unbalanced flow components can energetically interact and generate
fine-scale flow structures that cascades to smaller dissipative scales (McWilliams, 2016; Taylor & Thomp-
son, 2023; Thomas, 2023). In situ observations, idealized and ocean model based studies reveal an increase in
Rossby number and strength of the forward cascade of flow energy as we move from mesoscales to smaller
submesoscales (Capet et al., 2008; Thomas & Vishnu, 2022; Thompson et al., 2016; Yu et al., 2019). Addi-
tionally, passive tracers, such as spice for example, are seen to have a steeper spectra as we transition from meso to
submesoscales, this being an indication of more efficient stirring and dispersion of tracers due to the active role of
unbalanced flow components (Klymak et al., 2015; Shcherbina et al., 2015; Spiro Jaeger et al., 2020; Sunder-
meyer et al., 2020).

As is clear from above discussion, dynamics of dispersion changes drastically as we go from mesoscales to
submesoscales, making it challenging to capture tracer dispersion dynamics using coarse resolution models.
Capturing fine scale submesoscale features in itself is difficult in coarse resolution models. Additionally,
capturing tracer dispersion requires numerically integrating tracer equations advected by the flow. The compu-
tational cost increases when we consider realistic situations where dozens of tracers need to be advected at the
same time. For example, Heuzé et al. (2023) lists some of the passive trace gases in the Arctic collected during the
Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAIC) expedition. In this expedition
alone, they sampled two isotopes of helium, hydrogen, sulfur hexafluoride, tritium, and chlorofluorocarbon and
considered their unsampled equivalents, such as carbon and argon. Raimondi et al. (2024) used radionuclides '*°I
and 2*U to investigate Atlantic ventilation into the Arctic. These, along with some of the above-mentioned
tracers, take the total number of tracers to over a dozen. Naturally we may ask, would it be possible to obtain
the tracer dynamics directly from the flow without integrating separate partial differential evolution equations? In
this paper we explore this possibility in an idealized set up using neural networks.

The development of machine learning algorithms and an expansion in affordable computational resources in
recent years has led to various data-driven methods being applied to ocean and climate modeling. In particular,
neural network models based on the framework of convolutional layers have gained popularity due to their ability
to capture spatial features (Goodfellow, 2016; LeCun et al., 2015). A common use of convolution based models in
oceanography is for subgrid parametrization or resolution upscaling. Bolton and Zanna (2019), for example, used
a simple convolutional neural network to successfully model the subgrid scale momentum forcing. They also used
the same architecture to predict subsurface streamfunctions from the surface layer streamfunction in a three-layer
QG ocean model. More complicated architectures of autoencoders and generative adversarial networks (GANs)
have been used for stochastic subgrid parametrization (Perezhogin et al., 2023). In these examples we see one
physical field passing through a neural network to generate another physical field. Tracer prediction from flow
field would also fall under this category of use of neural networks.

Neural networks have also been used for segmentation and feature extraction-like tasks in oceanography. For
example, H. Wang et al. (2022) used a GAN to extract tidal features from snapshots of sea surface height.
Similarly, Huo et al. (2024) used a multitask neural network structure to segment out mesoscale eddies and also
find their edge contour from sea surface height data. In more specific applications related to oceanic tracers,
Ducournau and Fablet (2016) used convolutional neural networks to upscale or increase the resolution of the sea
surface temperature. Su et al. (2022) tried to reconstruct the time series of three-dimensional temperature tracer

BIJAY AND THOMAS

2 of 36

85U8017 SUOLILIOD 3AIea.0 (el jdde 8y} A pausenob afe saplie YO ‘88N JO S3INJ o} Afeiq1 3UlUO A8]IM UO (SUOTIPUOD-PUE-SWLBY W0 A8 | 1M Ae1q 1 BU1|UO//:SANY) SUORIPUOD PUe SWB | 83 885 *[6202/20/50] U0 ARIqIT8UIIUO AB|IM ‘GS9000HCSZ0Z/620T 0T/I0p/L0d" A3 1M Aseiq 1 puluo'sgndnBe//sdny woiy papeojumod ‘€ ‘5202 ‘0T2SE662



NI

ADVANCING EARTH
AND SPACE SCIENCES

JGR: Machine Learning and Computation 10.1029/2025JH000655

using satellite-based surface data. They used a combination of convolution layers with a sequence architecture
called long short time memory (LSTM), together popularly called ConvLSTM (Shi et al., 2015). G. Zhang
et al. (2023) used a three-dimensional variant of the convolutional layer to implement a GAN model for
reconstructing a three-dimensional subsurface salinity tracer field from a three-dimensional temperature profile.

PINNs or physics-informed neural networks (Raissi et al., 2019) have gained widespread popularity when
applying neural networks to physical systems. PINNs allow the incorporation of conditions, such as equations,
conservation laws, or other physically relevant principles during the training phase of the neural networks,
making the networks much more accurate when used for scientific applications. R. Wang et al. (2020) for instance
implemented PINNs by adding incompressibility constraints to their neural network loss function in order to
produce turbulent flows with desirable features.

In this work we use multiple neural network models to predict tracer features from the flow. Our models are based
on popular architectures of Autoencoders, UNet, and conditional GAN. Along with these, we also make use of a
custom layer, the LoConv layer, that resembles a convolutional layer but without the spatial homogeneity
assumption of a standard convolutional layer. Using this layer we construct a set of LoConv models. We also
make use of PINNs in a mild form, where instead of adding physical constraints in the training loss function, we
add a constraint on the order of magnitude of tracer spectral coefficients in the inertial range, which we call
spectral loss. We test the prediction of the neural networks generating tracer physical field, spectra, flux, and other
statistical features against the truth across different models, providing us insights on the features captured and
missed by different models.

The paper is organized as follows. The governing equations generating the turbulent flow and tracer fields are
discussed in Section 2. A detailed description of the different kinds of neural network models and their archi-
tectures are discussed in Section 3; readers not interested in specialized neural network architectures and data flow
may skip this section and go directly to Section 4 that compares the computational benefits of neural networks
over direct integration methods. Results from different regimes using neural networks are detailed in Section 5
along with statistics and applications. We finally conclude the study with a broader view in Section 6.

2. Flow and Tracer Dynamics Across Different Regimes

We used the two-vertical-mode model studied by Thomas and Vishnu (2022) to generate flows varying from
asymptotically small to O(1) Rossby numbers. The model is derived by projecting the f-plane hydrostatic
Boussinesq equations onto the barotropic mode and a single high baroclinic mode, leading to just two vertical
modes. Such a set up is a low dimensional representation of the oceanographic situation, where the barotropic and
the first one or two baroclinic modes contain most of the balanced energy while unbalanced flow components
such as near-inertial waves excited by winds blowing over the ocean or as eddies interact with bottom boundaries
are high baroclinic modes (Alford et al., 2016; Wunsch, 1997). The two-vertical-mode model in nondimensional
form is:

ol

E + Roz-V X [VT . VVT + ve- VVC + (V . Vc) Vc] =fT - VAng (la)
ove 5 8
7+R0[Vc'VVT+VT'VVC] +Bquc+z><VC =fC—I/A Ve (lb)
[Zj
%+V'Vc+RO[VT'V'pc] = _I/Aspc (IC)

Above, subscripts “T” and “C” represent barotropic and baroclinic fields, respectively. For instance, {7 and vy are
the barotropic vorticity and velocity vector respectively, related by { = Z- V X vg, with Z being the unit vector
in the z-direction. v and p¢ are the baroclinic velocity vector and pressure, respectively. V is the gradient operator
and A = V? is the Laplacian operator. The “” terms on the right hand side represent forcing terms while the
terms containing A% are hyperdissipation terms, dissipating flow fields primarily close to the grid scale, thereby
preventing accumulation of energy at small-scales. The hyperdiffusivity v is chosen to be 10733,

Equation 1 in non-dimensional form were obtained by scaling velocity with a mean flow velocity estimate, U,
spatial coordinates by horizontal length scale, L, time with inertial frequency f, and pressure, pc with fUL. Rossby
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number Ro = U/(fL) and Burger number Bu = (NH/nzfL) are non-dimensional parameters in Equation 1, N,
H, and n being the buoyancy frequency, depth of the ocean, and vertical mode number. Since the baroclinic mode
is a high mode, we used a low Burger number Bu = 0.01 and generated flows for Ro going from 0.1 to 1.0.

We integrated Equation 1 in a doubly periodic domain D = [0,2x] X [0,2x] using the Fourier spectral method
with RK4 scheme for time stepping. We used 7682 grid points in space and a time step of At = 5 X 1073, The
barotropic vorticity was forced at low wavenumbers k = |k| <5, wherek = (k,k,) is the wavenumber vector in
Fourier space, while the baroclinic mode was forced at k = 0, exciting pure inertial oscillations. Both barotropic
flow and inertial oscillations in the baroclinic mode were randomly initialized and the forced numerical in-
tegrations were run long enough for the flow to equilibrate. The forcing scheme we used was similar to that used
in Thomas and Vishnu (2022) and by varying the forcing strength we generated flows with desired baroclinic-to-
barotropic energy ratios, E-/E7, hereafter simply called energy ratio. Thomas and Vishnu however kept the
energy ratio close to 0.1 and varied Rossby number and the resulting flow structures can be seen in their Figure 1.
In this work we generated a broader range of flows by varying both Rossby number and energy ratio. Specifically,
we used energy ratios of 0.01, 0.05, 0.1, and 0.15 for Rossby numbers going from 0.1 to 1. For each case we
calculated an effective Rossby number, Ro,; = Ro- RMS(C T) , where RMS stands for root-mean-square

computed over the whole domain. This effective Rossby number for each case is given in Table 1.

The left column of Figure 1 shows snapshots of vorticity field from simulations corresponding to various pairs of
Rossby number and energy ratios. In Figure la we have a vorticity field corresponding to Ro = 0.3 and
Ec-/Er = 0.01. Here we can see coherent vortices with some amount of disruption of anticyclonic vortices.
Lower Rossby number flows gave more coherent vortices with negligible small-scale features, similar to those
seen in Figure 1a of Thomas and Vishnu (2022). Moving down to our Figure 1c, the Rossby number remains the
same Ro = 0.3 as in Figure 1a, but the energy ratio is increased to E./E; = 0.15. In this case we see an increase
in small-scale structures. The coherent vortex structures are broken down further than those in panel (a), with only
a few of the positive-valued coherent structures remaining. Going from Figure 1c—le, we increase the Rossby
number to 0.7, while keeping E-/E; = 0.15. We see a complete breakage of all coherent structures, with barely
few sparse spots of positive-valued vortex-like structures. There is a decrease in coherent structures and increased
production of small-scale structures everywhere in the vorticity field as we increase either Rossby number or
energy ratio. The vorticity field for the most extreme case of Ro = 1.0 and E./E; = 0.15 is provided in Figure
Sla in Supporting Information S1.

Once the flows of the above nature were set up, a passive tracer, , was advected by the divergence-free barotropic
flow and allowed to evolve until both the flow and tracer field attained statistical equilibrium. The evolution of the
tracer was based on the equation:

00

E+VT'V6=f(;—aA80 )
Above fj is a forcing term while the last term on the right-hand side of Equation 2 is the hyperdissipation term,
which prevents tracer accumulation at grid scale. Here a is hyperdiffusivity, whose value is chosen to be the same
as v, the hyperdiffusivity coefficient used for vorticity.

The tracer Equation 2 was written to be consistent with the flow equations, Equation 1. However, as the tracer
evolution only depends on barotropic velocity, hereafter for convenience we will drop the subscript “T” and
denote v for barotropic velocity and { for barotropic vorticity.

The tracer field was randomly initialized and the forcing we used for the tracer evolution was identical to that used
by Sirohi and Thomas (2024), where the forcing maintains tracer variance at k = 1. The initial conditions had no
role for long times with the tracer field attaining forced-dissipative equilibrium. As a result of the tracer forcing, at
all times and across different regimes the tracer field at domain scale, ¥ = 1, remains the same. This strategy was
adopted by Sirohi and Thomas to explore the transition of tracer dispersion phenomenology as we move from
mesoscales to submesoscales by generating a family of tracer fields whose tracer variance was the same at k = 1.
This feature makes comparing tracer variance spectra of different regimes more straightforward since they all
have the same value at the starting point k = 1, as opposed to an arbitrary stochastic forcing that may lead to
different tracer variance spectra starting points.
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(a) ¢; (Ro=0.3 and E_./E, =0.01) (b) ¢
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Figure 1. Physical structure of barotropic vorticity, {7, and tracer, 6, for three regimes.

Of course, while the domain scale tracer variance remains the same across different regimes, the changing energy
ratio and Rossby number will stir and disperse tracer very differently at scales below domain scale. Consequently,
the family of tracer fields will have varying small scale structures and variance spectra inertial ranges. Our goal in

BIJAY AND THOMAS 5 of 36

351017 SUOWILLIOD SAERID [ea!jdde U Ag pouienob a1 S YO 88N JO 3N 0 Al 178U1UO AB]IA O (SUOTIPUOD-PUE-SWLSYLI0D" A8 1M ARe.q 1BU1 U0/ SdIIL) SUONIPUOD PUB SWL L 8L 89S *[5202/20/G0] U0 Aeili8UIIUO A3 |IA ‘SS9000HCSZ0Z/6Z0T OT/10p/w0a"A 1M Al 1pul uo'sandnBe//:sdny WOl pepeo|uMoa e ‘SZ0Z ‘0TZSE662



I Vedl
M\I JGR: Machine Learning and Computation 10.1029/2025JH000655
AND SPACE SCIENCES

Table 1 this work is to examine how different neural network models can predict the
Table Representing Effective Rossby Number, Roy;, Corresponding to features of tracer structures from this family of tracer fields, given the flow,
Various Energy Ratios and Rosssby Numbers especially with an eye on small-scale or submesoscale dynamics.
Ro We generated tracer fields in forced-dissipative equilibrium for all combi-

Ec/Er 01 02 03 04 05 06 07 08 09 1 nations of the 10 Rossby numbers Ro € {0.1,0.2,...,1.0} and four energy
001 013 033 062 090 128 189 D43 294 346 409 ratios EC/ET. e {0.01,0.05,9.1,0.15}, as given in 'rows and f;:olumns of
0.05 B 033 078 T 166 232 208 390 442 507 Tl“abl-e 1, providing us 40 regl@es of flow and Fracer fields. The. rlg}'lt colurr}n

in Figure 1 shows the tracer field corresponding to the vorticity field to its
0.1 0.13 043 083 144 222 3.0 4.09 504 6.07 7.07 . . L.

left. Notice that the large-scale structures of the tracer fields share similar-
0.15 0.14 046 095 1.67 278 3.83 503 634 [7.61 9.06

ities, this being due to the tracer forcing maintaining the tracer variance at

Note. Above Ro,y increases with increasing energy ratio for a fixed Ro and ~ domain-scale k = 1 across the regimes. Despite the similarity in large-scale
with increasing Ro for a fixed energy ratio. The 14 red colored cells are cases  grcyres, we see an increase in tracer dispersion and small-scale features as

used for training neural network models while the remaining 26 are used for

testing.

we move down the column. More significant changes occur along the
boundaries of the tracer structures. For instance, let us focus on the coherent
structure enclosed in black boxes in panels (b), (d), and (f) of Figure 1. As we go down from (b) to (f), the
enclosed blue structure in panel (b) gets increasingly stirred, and its boundary disperses out, creating more small-
scale features. The plot of the tracer field corresponding to Ro = 1.0 and E/E; = 0.15 is provided alongside
the vorticity field in Figure S1b in Supporting Information S1.

The turbulent dispersion of tracer fields as we move from meso- to submesoscales, as seen in the right column of
Figure 1, is explained in detail in Sirohi and Thomas (2024), much of the analysis being based on integrating and
manipulating the tracer equation, Equation 2. In this paper, we will explore the following question: from the
barotropic vorticity field can we predict passive tracer fields using neural networks? Below we will look at the
different neural networks trained using data corresponding to the red cells in Table 1, so that they can take in
vorticity as input and predict the tracer for the remaining untrained cases. Once again we note that the family of
tracer fields we generated used a specific tracer forcing scheme and dissipative operator and the neural networks
were trained using this family of tracers. Choosing a different forcing scheme or dissipation operator would
require retraining the neural networks based on the corresponding tracer field family.

3. Neural Networks: Architectures and Training

To predict tracer fields from flow fields we used four types of neural network models: (a) Autoencoder, (b) UNet,
(c) conditional GAN, and (d) LoConv model. We will now describe their key components and architectures, these
being schematically shown in Figures 2 and 3.

3.1. Key Components of the Neural Networks

Before we discuss the architecture and pipline of the models used, we briefly look at the building blocks of the
models. All the models used in this work are constructed using one of the following: convolution based down-
sampling or up-sampling blocks, plain convolution and convolution transpose layers, and our novelty, the
LoConv layer. Down-sampling and up-sampling blocks are used in all our models. The down-sampling blocks,
indicated by red icons in Figure 3, consists of a convolutional layer, LeakyReLU activation, and a batch
normalization layer. The up-sampling blocks indicated by green icons in Figure 3, consists of a convolution
transpose layer with LeakyReL U activation, and a batch normalization layer. Both blocks also have dropout
layers. The function of the dropout is to randomly inhibit updating some weights during the training. This in-
hibition is done with probability p, which is set to p = 0.3 in our case. The LeakyReLU[a] activation with
negative slope parameter « is the function LeakyReLU[a](x) = x when x>0 and LeakyReLU[a](x) = ax when
x<0, broadcasted over an array. We set the negative slope of LeakyReLU as 0.1 everywhere. Batch-
normalization layer simply takes an array A and returns (A — m)/v, where m is the mean and v is the standard
deviation of A (Goodfellow, 2016).

3.1.1. Convolution Layer

A convolution layer takes in image-like input in the form of an L X B X C array where L, B, and C represent
length, breadth, and number of channels in the input. It outputs an image-like array of the shape / X b X ¢ where
<L, b<B, and c < C represent the output length, breadth, and number of channels, respectively. To get each
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Figure 2. Mechanism of Convolution layer and LoConv layer with two input channels, one output channel, window of shape
3 X 3 and strides of 2 X 2.

channel of the output, the convolution layer does the operation of convolution of a filter with the input image. The
whole operation is determined by parameters stride (s, s,) and filter shape (n X m). The operation of convolution
is as follows. A moving window of the same shape (n X m) as the filter moves across the input image and extracts
a patch of filter shape across all input channels, and the dot product is taken with filter weights, which is an array
of learnable parameters of the shape n X m X C. After this the window moves to the right by s, steps, unless
steps are out of bounds for the array in that dimension, in which case the window moves down vertically by s,
steps and repeats the same. The whole operation gives a single channel of the output, and all channels are obtained
in a similar manner by replacing the dot product with a matrix multiplication. Figure 2a shows the above-
described mechanism of convolution for a square filter of shape 3 X 3 and taking strides of length two in both
directions to obtain a single channel of output from 2 channels in the input. Here we note that the same weights W
are multiplied across the image to get an output channel. This is in line with the assumption that features that the
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(a) Autoencoder (6.3 x 10° parameters)

1,84

(1.3 x 10%) ‘
(b.1) UNete |- - ‘ /

102441 1,4,1

512,4,2 (1.2 x 10 Parameters)

(b.2) Discriminator

(b) GAN
=(b.1)+(b.2)

512,8,4

(1.7 x 108)

(c) LoConv

i

Vorticity / Input

Tracer / Output

Boolean output

Down-sampling block

Up-sampling block

LoConv Layer

Convolution Transpose

Convolution

Figure 3. Illustration of the pipeline and summary of various models. The legends indicate the various layers used, and inputs
and outputs. Solid lines indicate passing output of a layer to another. Dashed lines indicate concatenation along the channel
(skip connection). Dash and dot lines from panel (b.1) to panel (b.2) indicates that the generated output is passed through the
discriminator to get the evaluation. Dash and dot lines from panel (b.2) to panel (b.1) indicate that the discriminator output is
passed to the loss function of the generator. Triad of numbers above each layer icon denotes the number of output channels,
filter length, and strides to be taken in the layer, respectively. The numbers written near the model names are the total number

of parameters in the neural network.
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filter captures are spatially homogeneous. This is beneficial as it makes feature recognition translation invariant
and also reduces the model size.

3.1.2. Convolution Transpose Layer

The whole operation of convolution to obtain an output channel can be thought of as a matrix multiplication to the
flattened input array. This would be a matrix M of shape LBC X [lbc, obtained using the filter entries, for
example, using W in case of the example in Figure 2a. A convolutional transpose layer takes in image-like input
in the form of an/ X b X c array where [, b, and c represent length, breadth, and number of channels in the input.
It outputs an image-like array of the shape L X B X C where L, B, and C represent the output length, breadth, and
number of channels. Such a transform can be obtained by multiplying matrix M7, whose entries are either zeros
(mostly) or the entries of the filter weights corresponding to matrix W. The convolution transpose layer effec-
tively does this operation in an efficient way.

3.1.3. LoConv Layer

We saw how the operation of convolution between a filter and an image-like array gives a channel of the output of
a convolution layer. Here the assumption of spatial homogeneity of features played a big role, as a fixed weight
matrix corresponding to a filter was dot multiplied along the moving window across the input array. But the
functional relation that we are trying to model may have some inhomogeneous elements in it.

To overcome this limitation, we use a custom layer that takes in input in the form of image-like arrays of shape
L X B X C and outputs image-like arrays of shape / X b X c, with notations the same as used in the convolution
layer above. This is done by a similar operation to the convolution as shown in Figure 2a, but here the filter weight
varies as we move in space along the length or breadth dimensions. Here, first, a moving window of shape
u X v X ¢ goes across the image by strides of s, horizontally and vertically, extracting patches from the input
array of the same shape. To each patch we take the inner product of a different learnable weight array. This
operation on the whole image gives one channel of the output of the layer, and all channels are obtained in this
manner. Figure 2b demonstrates computation of one output channel of the LoConv layer with strides of two. In the
case of stride s = 1, the output is of the same spatial shape as the input except in the channel dimension. We note
that this is similar to applying different dense layers to each of the extracted patches.

The architectures of the different neural network models are given in schematics in Figure 3. As seen from the
schematics, all models we use contain down-sample and up-sample blocks. Convolution and convolution
transpose layers have also been used directly as layers to extract or glue features. Convolution layers are indicated
by white icons (only present in panel b.2), while convolution transpose layers are indicated by gray icons in panels
(a), (b.1), and (c). We will now look at the individual model architectures.

3.2. Autoencoder

Autoencoder is popularly used for image segmentation tasks (Kingma, 2013) and is the simplest model we will
use. It is also the smallest with ~6.3 X 10% parameters in total, as indicated in Figure 3, near the subtitle of
panel (a).

The Autoencoder consists of an input layer followed by convolution-based down-sampling blocks, decreasing the
resolution of the image but increasing the number of channels or feature maps. This is followed by a convolution-
transpose-based up-sampling block and a convolution-transpose layer, increasing the resolution of the image
while decreasing the number of channels, until the required output shape is achieved (Goodfellow, 2016).
Figure 3a shows the architecture of the Autoencoder we use. The down-sampling blocks are indicated by red
rectangular icons followed by one up-sampling block, indicated by the green icon, which is followed by a
convolution transpose layer indicated by a dark gray icon in Figure 3a.

3.3. UNet

UNet is a prominent deep learning image-to-image pipeline that has found widespread applications in various
fields, especially in computer vision (Ronneberger et al., 2015). Its architecture is a U-shaped structure as seen in
Figure 3(b.1), where the encoder part downsamples the input image to extract features, while the decoder part
upsamples the features to reconstruct the target image. The key components of UNet are:
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* Encoder: A series of down-sampling blocks to reduce the spatial dimensions. This part consists of the red icons
seen in Figure 3(b.1). Here the first layer takes the vorticity field as input.

¢ Decoder: A series of up-sampling blocks to increase the spatial dimensions while gluing extracted features.
This is the right side of Figure 3(b.1) with green and gray icons. The output of the final layer of the decoder is
the predicted tracer.

o Skip connections: Connections between corresponding blocks of the encoder and decoder, of the same spatial
dimensions. This is done by concatenating the encoder layer's output on the inputs of the decoder layers along
the channel axis.

UNet's architecture when used alone is best for exact functional relations where there is no stochasticity expected
in the model output or when the problem is not generative in nature, such as in image segmentation problems for
example (Ronneberger et al., 2015). In our case, the total number of parameters in the UNet models were
~1.3 x 10%, much larger than the Autoencoder, as indicated in Figure 3.

3.4. Conditional Generative Adversarial Network

Conditional generative adversarial network is a variant of Generative Adversarial Networks that can generate or
sample output, conditioned on additional information. Generally, a GAN takes in a random noise vector and
outputs image-like arrays from the learned distribution (Radford, 2015). A conditional GAN (hereafter referred to
simply as GAN), along with the random noise vector, also takes in a condition vector as input and outputs an
image-like array from the learned conditional distribution (Gauthier, 2014). In our case, since we want to model a
functional relation, the model only takes in the condition input (vorticity) and no noise.

Our GAN model consists of a generator neural network and a discriminator neural network. Figure 3 panel (b)
shows the conditional GAN architecture as a combination of panels (b.1) and (b.2), corresponding to the generator
and discriminator, respectively. The generator takes in the condition vector as input, which in our case is the
vorticity, and outputs the tracer field. The same UNet in panel (b.1) described earlier is trained as the generator.
The discriminator takes in the vorticity field, along with, either the actual tracer field or the predicted tracer field
given as output of the generator as its inputs. The output of the discriminator is a vector of probabilities, that is
trained to have all very high values, that is values near one, when an actual tracer is the input and all values very
low, that is near zero, when a generator-predicted tracer is the input (Goodfellow, 2016). This way, it distin-
guishes between real and generated tracer fields. The discriminator is a composition of four downsampling and
two convolution layers, as in panel (b.2). Both networks are trained simultaneously in an adversarial manner. The
generator aims to produce outputs that are indistinguishable by the discriminator from real samples, while the
discriminator tries to accurately classify real and fake samples. The training process involves iteratively updating
the parameters of both networks based on their performance. We explain this briefly in Section 3.6 below.

3.5. LoConv

The LoConv model consists of a small UNet-like base including the red and green blocks seen in Figure 3c, but
with two LoConv layers (indicated by blue icons) pushed in between. The LoConv layer, much like the
convolution layer, captures local features in its input. But unlike a convolution layer, the window of weights is not
spatially homogeneous, that is, there is a different window to capture the local features at each location along
length and breadth, as described earlier. This helps the model capture the space-varying local dependence between
the input and the target. A convolutional layer is determined by the number of output channels, filter size, and
strides that the window takes. The same three parameters are also used to determine and instantiate a LoConv
layer in a similar manner. But every time the filter window strides in space, a new set of weights is used to extract
features at that location by taking the inner product of the weights and the input image patch. Since the model
contains “local convolution-like” layers, we call this the LoConv model. The spatial inhomogeneity of LoConv is
useful as tracer stirring may have spatially inhomogeneous components. In our case the LoConv has a comparable

number of parameters to the UNet (~1.7 x 108).

With the model architectures described above, the data at each point get transformed as per array sizes indicated
on top of each icon in the schematics in Figure 3. We refer readers to Appendix A for a detailed understanding of
the data flow through the models.
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3.6. Training Method

The general way of training a neural network in supervised learning is to first define a loss function that depends
on the output prediction of the model, the target output, and possibly the input. Then, use some variant of the
gradient descent algorithm to update the trainable weights in the model with the objective of reducing the loss
function. This update is done iteratively in many steps. In each step, the models and optimizer operate over a small
batch size of a few samples of the whole training data. In our case, the batch size was two. All the models were
trained for 6,000 steps using the Adaptive momentum estimation (Adam) optimizer with a changing learning rate
(Kingma, 2014). Learning rate (a) and moving average parameters () are some hyperparameters in Adam
optimizer. It updates the weights Wy at time T of optimization, according to

Wiy = Wr —amy 3)
7]
my =0, mp = (1 —ﬁ)[ (aLV(‘)/jS)] + pmr_, )

Here m; as defined is an exponentially weighted moving average of gradients and Loss is the loss function of the
model whose weights are being updated.

In our case, f = 0.35 for all optimizers corresponding to each model. The learning rate hyperparameter was
changed after 5,000 training steps. For the first 5,000 steps it was fixed to be @ = 0.003 and then to o = 0.0006
for all model optimizers except for the discriminator of the conditional GAN, for which it was fixed to be 0.01.

Let ¢ be the input vorticity field and € be the target output tracer field. Denoting the predicted output tracer field by

Op

between the prediction and target, plus a weighted spectral loss, that is

> the loss function for Autoencoder, UNet, and the LoConv model is given by the L' norm of the difference

Loss(epredvg) = ||0prez/ - 6”1 + ﬂLoss.s’pez'tra[ (epred’a) (5)
Lossspectral (Gpredﬁe) = IOg( H( é/zred - é ) ) (6)
1
where L' norm || — ||, for an array (a;,as, ... ,a,,) is defined as ||(ay, @z, ... ,a)|l; = lai] + |aa| + ... + |a,ul.

Additionally, hat denotes Fourier transform while the double-tilde denotes a filter in spectral space that retains
Fourier coefficients of the tracer in wavenumber band k € [25,100] and sets the remaining Fourier coefficients
to 0.

In the loss function, Equation 5, the first part captures the difference in pointwise tracer physical structure. On the
other hand, the second part given in Equation 6 with a weightage 4 checks the departure of the spectrum of the
tracer prediction from the true spectrum, specifically in the inertial range k € [25,100]. The upper limit of 100
was chosen to avoid the dissipation range of wavenumbers, appearing after the inertial range where our primary
focus is. We did selected experiments by including the diffusive range also in spectral loss, although that had little
effect on improving the inertial range spectra. In the absence of spectral loss, the predicted tracer variance spectra
was seen to fall off below the actual tracer variance spectra in the inertial range, especially around & = 25 for
different models. This led to the choice of the lower wavenumber cut off of 25 in the spectral loss function above
based on a few different trials.

We will discuss results from using four different A values: g = 0,4, = 1/3000,1, = 1/300,and 13 = 1/30.1t
then follows that 4, case has no spectral constraint while 1; has maximal spectral constraint enforced. To choose
the values of A we took an adhoc approach of repeatedly increasing the order of the weightage from 0 to 1/3000,
to 1/300 to 1/30, and observing the physical structure of the predictions. We stopped at 1/30 when we saw that
both the LoConv and UNet models showed a slight increase in the absolute error in prediction when increasing
from 1/300. The spectral loss part in the loss function can help in ensuring that the predicted spectra do not fall off
much below the true spectra, as we shall see in the following section, and this approach is a mild form of PINN
strategy of enforcing extra conditions in the loss function.
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For the conditional GAN, the loss functions are slightly different, and the training of the generator and
discriminator happens simultaneously in an adversarial manner. Let G denote the generator and D denote the
discriminator. The generated tracer and the true tracer are both passed through the discriminator to get the dis-
criminator's classification of the generated tracer D({,0,,,) and the discriminator's classification of the real
output D(£, 6). The prediction of D is a two-dimensional array of probabilities of the input being a true tracer or
one predicted by the generator. The discriminator loss function is the binary cross-entropy loss function with the
two classes being true tracer and predicted tracer (output of generator) (Zhang & Sabuncu, 2018). Then the
generator loss, Lossg, is given as

LOSSG (gpred’ 9) = ||9pred - 9”1 + j'Lossspectml (epredv 9) - 7D(§v gpred) (7)

From this we see that the output of the generator is used by the discriminator in its input, and the output of the
discriminator is used in the generator's loss function. The term yD({,6,,,) in Equation 7 emphasizes that
minimizing the generator loss leads to maximizing the discriminator probability score for the predicted tracer, that
is, “fooling” the discriminator. This is the adversarial nature of training the two networks.

All the models were trained on a Linux system with Intel Xeon CPU (2.2 GHz) 16 GB of RAM and a Tesla T4
GPU with a total memory of 15360.0 MB. The total time taken for training the models were: Autoencoder—
1.17 hr, LoConv—1.517 hr, UNet—23.12 hr, and GAN—3.92 hr.

4. Time Taken by Neural Networks Versus Direct Numerical Integration

As explained earlier, it is expected to be beneficial to use neural networks to predict tracer fields directly from the
flow, instead of numerically integrating the tracer equation along with the flow. To evaluate the benefits of using
neural networks, we will now quantify the computational time taken by the two processes.

To compare the two processes on equal footing, we will compare the neural network inference time against the
time for numerical advection of the tracer equation on the same hardware configuration. Specifically, we chose a
broadly accessible general-purpose laptop configuration of an Intel Xeon CPU (2.20 GHz), 16 GB RAM and no
GPUs. Consider the process of generating tracer snapshots at 20 time instances separated by a unit time interval
tg, to + 1,...,15 + 19. The separation of unit time intervals is useful since generating tracer statistics such as
averaged spectra, flux, correlations, etc. often require averaging over different tracer field instances and often a
unit time interval is the preferred time gap that allows efficient time averaging. Of course, this time gap can be
higher than unity as well, depending on specific averaging requirements.

For generating tracer fields from the neural networks we collected the 20 vorticity snapshots corresponding to the
same time instances by integrating the flow equations. With this information, the neural network models took the
following time to generate the 20 tracer fields: Autoencoder—4.17 s, LoConv—39.89 s, UNet and GAN—
64.67 s. On the other hand, direct numerical integration of the tracer equation needed a time step of 0.005 for
stable integration, leading to 200 time steps in a unit time interval. This numerical integration approach took
11261.12 s or 3.13 hr for generating the 20 tracer fields, significantly more than the neural network prediction
time. Note that time for direct integration assumes that we are starting with a tracer field that is already in forced-
dissipative equilibrium. The direct integration time can be much longer if we include the transient evolution time
of the tracer field until it reaches equilibrium. Both processes, neural network predictions and direct numerical
integration was seen to take proportionally more time for generating more frames, such as 40 frames instead of 20.
In general, the slowest neural network was faster than direct integrations by a factor of 174. This advantage will
improve further if the time gap between predictions were to be more than unity. Also note that the time taken for
the two processes will proportionally reduce if we scale up the hardware, such as using higher configuration CPUs
or GPUgs, since both processes will benefit proportionally.

Recall from the previous discussion that the Autoencoder, LoConv, UNet, and GAN took 1.17, 1.517, 3.12, and
3.92 hr, respectively for training on a 16 GB GPU system. The above estimates compares the two processes on the
same hardware but ignores the time taken for training neural networks. Notice that the GAN model takes more
time in training alone (3.92 hr) than the direct integration process (3.13 hr). Therefore, on a quick look, predicting
a discrete sample of 20 frames using neural networks does not seem to be much beneficial when compared to
direct integration if we factor in the training time. However, neural networks can still be beneficial when
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predicting a batch of tracer fields corresponding to different regimes. To quantify this, recall that the 14 red cells
in Table 1 were regimes used for training while the 26 white cells are regimes used for predictions. Consider
neural networks generating 20 tracer fields for each of these 26 regimes. These predictions will need 26 X 4.17
seconds = 1.8 minutes for the Autoencoder, 26 X 64.67 seconds =28 minutes for the UNet and GAN, and
26 X 39.89 seconds = 17.3 minutes for the LoConv. The total time taken by the different neural network models
to predict 20 tracer fields across 26 regimes, obtained by summing the training and prediction time, are:
Autoencoder - 1.17 + 1.8/60 = 1.2 hr, LoConv—1.517 4+ 17.3/60 = 1.80 hr, UNet—3.12 4 28/60 = 3.59 hr, GAN
—3.92 + 28/60 = 4.39 hr. In contrast, direct integration for generating 20 tracer field snapshots across 26 regimes
would take 81.33 hr, a factor of almost 20 more than GAN, the slowest neural network. This calculation again
assumes that we are starting direct integration from an equilibrated tracer field. The total time taken for direct
integration will be much longer if we factor in the time taken by the tracer field to reach forced-dissipative
equilibrium.

The above discussion informs us that comparing advantages of neural networks over direct integration does not
often lead to black and white answers. If we discard the training time, neural networks without doubt are
significantly faster than direct integration. On the other hand, if we factor in the training time, neural networks can
be inefficient in saving computing time if the predictions are sought for a single regime. However, neural net-
works can be beneficial when predicting tracer structures for a broad set of regimes, that is a bigger sample, even
with training time factored in. In such cases, direct integration takes a lot more time to generate a large set of
samples than the total time taken by neural networks.

5. Neural Network Predictions

As explained earlier, our data consists of 40 regimes of flows, corresponding to each pair of Rossby number and
energy ratio as highlighted in Table 1. We chose 14 of these 40 regimes randomly and used only data corre-
sponding to those 14 regimes to train all our models, these being indicated by red color in Table 1. Only 35% of
total data was therefore used for training and the remaining were used for evaluating the predictions ahead. For
each regime, we collected 40 snapshots of tracer and vorticity for training, implying that our training data
consisted of 40 X 14 = 560 snapshots. In this section we will compare and contrast the tracer predictions made
by the Autoencoder, LoConv, UNet, and GAN against the true tracer field. Each of these 4 architectures were
trained with 4 different loss functions. The loss functions being parameterized by varying the weightages A of
spectral loss in Equations 5 and 7, discussed earlier. The four weightages 1 used for training the models are
A =0, 4, = 1/3000, 4, = 1/300, and 43 = 1/30. Consequently, we have 16 models in total, one for each
combination of architectures and weightages of spectral loss. We will indicate a model trained with weightage 4 as
Model-A4. For example, a combination of UNet trained without any spectral loss term will be indicated as UNet-4.
We will systematically compare the predictions of all of them by examining the predicted tracer physical
structures, tracer variance spectra, and flux.

5.1. Overview of Prediction Errors

All 16 models take in the vorticity field as input and output the predicted tracer field. The mean of the percentage
of absolute error for each of the models, where the mean is taken over prediction snapshots across the regimes, is
shown in Figure 4a. The mean percentage absolute error of n predicted samples is defined as

QL) = (¥ = Yl /I l) X 100
i=1

Here Y7 is the prediction and Y; is the truth. We see that the LoConv model with any weightage of spectral loss
outperforms all other models in terms of absolute error. The error for the LoConv model ranges between 12.45%
and 14.25%, and is seen to slightly increase with increasing weightage of spectral loss. The UNet models overall
ranks second, with the value of the error ranging from a minimum of 16.86% for A = 4, to a maximum of 25.96%
for A = ;. The GAN models have an error ranging from a minimum of 24.50% for 4 = 1, to a maximum of
36.86% for A = A3. Autoencoder has the worst performance in terms of absolute percentage error, with error
decreasing with increasing weightage of spectral loss, ranging from 34.65% to 42.46%. The comparatively poor
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Figure 4. Error comparison of the models across different weightages of spectral loss. Each figure presents the mean percentage absolute error for all 16 models. Four
different colors are used to represent the four architectures and the four points on the x-axis represent the four weightages for spectral loss.

performance of Autoencoder is expected, as the Autoencoder model is very small, with number of parameters
approximately 6 X 10 compared to the other models whose number of parameters is of the order of 103,

Figures 4b—4d show errors corresponding to the three regimes shown in Figure 1. Figure 4b is an instance for
Ro = 0.3 and energy ratio 0.01, and Figure 4c is an instance for the same Rossby number Ro = 0.3 but with a
higher energy ratio 0.15. The trend of errors across models in these two specific cases is the same as the trend in
the average error plot in Figure 4a. Figure 4d shows errors corresponding to Ro = 0.7 and Ec/Ey = 0.15, this
being a case of strong stirring of the tracer field. In this case we see that the error for LoConv and UNet models is
comparable when they are trained with a high weightage of spectral loss. This can be seen in Figure 4d where the
orange line and red line overlap for 1, and A5. The error plot for the most extreme case of Ro = 1.0 and
Ec/Er = 0.15 is provided in the Figure S2 in Supporting Information S1. In that case, UNet-4, or UNet-4; have
errors around 16%, and corresponding LoConv models have errors around 20%.

From the point-wise absolute error, which is a useful metric for evaluating model predictions, LoConv seems to
do very well, while UNet seems to match with LoConv at high Rossby numbers for spectral weightages 4, and 45.
Below we will compare the models' predictions further based on physical plots and other statistics.

5.2. Tracer Physical Structure and Spectrum

Here we will look at the tracer physical structure predictions from different models. Figures 5-8 show
comparative physical structures of the predicted tracer fields. These are instantaneous predictions from randomly
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Figure 5. Comparison of predictions of tracer physical structure and variance spectrum from models with 4 = 4, for
Ro = 0.3 and E./E; = 0.15. The black boxes highlight a specific region for comparison.

BIJAY AND THOMAS

15 of 36

85US0 17 SUOLULLOD SAIERID eatdde au3 A pauieob afe oILe YO ‘38N JO S9INI 04 Afeid 1T 8UIUO A3]1M UO (SUORIPUOD-PUB-SWLBI/W0D A3 | 1M ALe1q 1B UO//SdNY) SUOIPUOD PUe SLWLB L 84} 835 *[5202/20/50] U0 ArIqiauliuO AB|1M ‘GG9000HCSZ0Z/620T OT/I0p/Lod A3 1M Aleiq utuo'sgndnBe//sdny wouy papeojumod ‘€ ‘5202 ‘0TZSEBBE



AU . . .
M\ JGR: Machine Learning and Computation 10.1029/2025JH000655

(a) 0, True (b) 6, LConv

-0.1

-0.2

-0.3

-0.1

-0.2

-0.3

(f) Tracer variance spectrum

0.3
1084
0.2
3
0.1 5 10°]
0.0 5 10%{ —— Autoencoder-As
§ —— GAN-A;3
—01 = e UNET-A3
LoConv-A3
~0.2 . — True
10 r - ,
100 10! 102
-0.3 K

Figure 6. Comparison of predictions of tracer physical structure and variance spectrum from models with 4 = 45 for
Ro = 0.3 and E¢/E; = 0.15. The black boxes highlight a specific region for comparison. Yellow boxes contain a region
with anomalous physical features.
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Figure 7. Comparison of predictions of tracer physical structure and variance spectrum from models with A = 4, for
Ro = 0.7 and Ec/E; = 0.15. The black boxes highlight specific regions for comparison.
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Figure 8. Comparison of predictions of tracer physical structure and variance spectrum from models with 4 = A5 for
Ro = 0.7 and Ec/E; = 0.15. The black boxes highlight specific regions for comparison. Yellow boxes contain a region
with anomalous physical features.
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chosen times from two pairs of energy ratios E-/E7; and Rossby numbers Ro. In Figures 5 and 6 we see pre-
dictions for Ro = 0.3 and E./E; = 0.15, corresponding to all model architectures, but in Figure 5, no spectral
loss (A = 4¢) is used, whereas in Figure 6, maximum spectral loss of A = 13 is used. Similarly in Figures 7 and 8,
we see predictions for data from Ro = 0.7 and Ec/Er = 0.15, corresponding to all model architectures, but in
Figure 7, no spectral loss is used, whereas in Figure 8, maximum spectral loss of A = 15 is used.

Let us do a qualitative comparison of various models' predictions for Ro = 0.3 and E/E; = 0.15. First we will
compare models trained without any spectral loss, thatis, A = 4y, = 0. The predicted tracer fields in this case are
shown in Figure 5. All the models except Autoencoder-1, seem to produce the large coherent structures in the true
tracer field in Figure 5a accurately. The Autoencoder produces artificial patches of low tracer value within the
large structures in Figure Se. Let us now focus on the region inside the black box near the bottom right region of
Figure 5a of the true tracer field obtained numerically. This region has some sharp small-scale features, such as
two prominent blue streaks, generated by flow stirring. We will use this region to compare different predictions,
although the reader may infer qualitatively similar results using any other specific region in the domain. We note
in Figure 5b that the LoConv-4;, model prediction captures a lot of small-scale features and produces features
similar to the true field, such as the thin blue streaks in the black box. The UNet-4,, does not seem to produce such
minute details, and the predictions in Figure 5c also look diffused compared to the true tracer field or the
LoConv-4 prediction. One of the streaks present in the box region is completely lost in the UNet prediction. The
GAN-/ prediction in Figure 5d seems even more diffused than the UNet and misses most small-scale features.
For instance, both blue streaks in the boxed region are lost. The Autoencoder-4, predictions in Figure Se are way
off. Again looking at the boxed region, none of the thin blue streaks present in the true tracer field seem to be
present in the prediction.

Figure 5f shows the spectrum of tracer variance with a black line indicating the true spectrum. The spectrum of
Autoencoder-4, prediction, shown in blue color, has much lower variance across all scales. GAN-/, predicted
spectrum starts dropping at around wavenumber 20. UNet-4, spectrum shown in red and LoConv-4, spectrum
shown in orange start to drop at around wavenumber 30, although the drop from the true spectrum is far more for
UNet-/, than the LoConv-4 prediction. This explains the more diffusive nature of predictions by UNet-4, or
GAN-/,. In the dissipation range, above wavenumber k = 100, the true spectrum in the black curve drops steeply
due to the usage of hyperdissipation in the tracer Equation 2. While all the predictions drops gradually, the steep
drop in the true spectra, which is characteristic of the hyperdissipation range, is absent in the predicted spectra.
This is expected since there is no natural diffusion in spectral space applied to the neural network models, and the
learning is based on pattern recognition from the data in physical space.

In principle we could enforce an extra diffusion criterion at high wavenumbers, something we were able to
implement successfully to get faster dropping spectra predictions in the dissipation range. However, it is
important to note that hyperdissipation used in the tracer Equation 2 is an artificial means to get an extended
inertial range with a minimal dissipation range; this technique giving us almost two decades of inertial range. In
reality, tracer inertial ranges can span several orders of magnitude, compared to the two decades we obtain in our
data sets. Consequently, the neural net predictions having an inertial range that matches with that of the true
spectra with a gradual decay after the inertial range is more realistic and therefore we do not enforce any extra
constraints to diffuse tracer fields in the dissipation range during the neural nets' training.

In Figure 5f notice that the predictions' spectra drops such that the inertial range is not well captured by the
predictions. To address this we incorporated spectral loss function, explained with Equations 5 and 6. Gradually
increasing the weightage A in Equation 5, we found the predictions to have inertial range that resembled that of the
true tracer field spectra. Figure 6 shows predictions for the same Rossby number 0.3 and energy ratio 0.15 but
from models that have been trained with maximum weightage of spectral loss, that is, A = 13. We note from
Figure 6f that the spectrum of all the predictions improves drastically in the inertial range when comparing it with
the spectra in Figure 5f.

We can again focus on the boxed regions in Figures 6a—6e for cross-comparisons. In panel (b) we note that
LoConv-4; has a slight increase in very small-scale features, but overall there is negligible improvement in small-
scale feature production. This is expected as LoConv predictions were already accurate, and there was little room
for improvement. The improvement in spectrum for the UNet-4; model slightly reflects in the physical structure
in panel (c). The two blue streaks in the boxed region are more prominent compared to the UNet-4 prediction in
Figure Sc. But the image still looks quite smoothed out, with a generic lack of small-scale features. Additionally, a
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sharp dot-like structure appears near the center of the physical plot, shown in a yellow box in Figure 6¢. The
structure takes a large positive value in a region with a high negative value, with tracer value fluctuating around it
concentrically. We found these kinds of anomalous dot-like structure generation to be common to most of the
tracer predictions from UNet, GAN, and Autoencoder models when trained with spectral loss. The introduction of
such artificial structures can change the Fourier coefficients of the predicted tracer appropriately to match the
spectrum of true tracer while deteriorating physical space features as a side effect.

Despite introducing spectral loss, the GAN-4; prediction in Figure 6d does not seem to have improved. When
compared to Figure 5d, the GAN-1; looks more diffused. The spectrum of GAN-4; prediction in green in
Figure 5f falls slightly at very large scales, reflecting a lighter-looking tracer field. Again, an anomalous sharp
dot-like structure appears, this being highlighted with the yellow box in Figure 6d. The tracer value fluctuates
around it concentrically. We also see a checkerboard pattern in the yellow box. We found such checkerboard-type
patterns to be typical for GAN models' tracer predictions and should be a consequence of adding a discriminator to
the model training. The Autoencoder-4; prediction in Figure 6e show improvement compared to Autoencoder-4
prediction in Figure Se. First, the large-scale features are improved as the low-intensity patches in coherent
structures have reduced. There are a lot of small-scale features appearing in the predictions, although as a
downside, the small-scale features seem arbitrary and do not reflect realistic flow structures. Additionally, while
not so prominent as in the UNet or GAN, a less sharp version of the dot structure also appears in the prediction of
Autoencoder when trained with high spectral loss. The yellow box in panel (e) of Figure 6 highlights this artificial
structure in the prediction.

We saw a consistent improvement in the spectrum in the inertial range for all models, seen by comparing panel (f)
of Figures 5 and 6. In the dissipation range seen in Figure 6f, beyond wavenumber 100, we see that the UNet
spectrum overshoots the truth while the GAN spectrum has large oscillations. The Autoencoder and LoConv
predictions gradually decay. Overall, we see that spectral loss seems to introduce more artificial features in the
UNet and GAN predictions.

We next look at predictions for the case Ro = 0.7 and E/E; = 0.15. First we look at all models trained with no
spectral loss, thatis, A = 4y, = 0, in Figure 7. Notice that the true tracer field in panel (a) is much more dispersed
than the lower Rossby number tracer field seen before. We have again drawn black boxes to highlight two regions.
One near the top boundary, where we have a long thin blue stream of tracer field and another in the bottom right,
where we see a thicker blue stream of tracer along with a blue cloud of small-scale dispersive structure. The
LoConv-4, prediction in Figure 7b accurately produces the large structures and some small features such as the
ones in the box on the bottom right. But the small-scale dispersive structures seem slightly diffused, as seen in the
top box region. The prediction of UNet-4, in panel (c) is much more diffused. The boundary of the blue stream in
the top box is very smooth, and the cloud in the bottom box near the right boundary is also diffused. The GAN-/,
prediction in panel (d) completely misses all small-scale structures and the predictions look more diffused than
UNet predictions, easily seen by looking inside the box regions. The Autoencoder-4, prediction in panel (e) again
creates patches of low absolute value of tracer. They produce more small-scale features than the GAN-4,, but the
features don't reflect the dispersive nature of the true tracer field.

In general we see that the predictions in Figure 7 are diffused or smoother than the true tracer field. This is re-
flected in the variance spectrum of the predictions. In panel (f) of Figure 7, the spectrum of all models other than
LoConv-4, drops off and diverges from the true tracer variance after the first 10 wavenumbers. The spectrum of
LoConv-/4, starts to diverge after the first 30 wavenumbers and does not drop off by much even after that.

The predictions for the same Rossby number and energy ratio, but from models trained with the highest weightage
of spectral loss, A = A3, are shown in Figure 8. From panel (f) we see that the spectrum of all the models other
than GAN is accurate for two decades of wavenumbers and only diverges near the dissipation range. This greatly
improves the visual quality of LoConv prediction. The LoConv-1; prediction in Figure 8b captures all the large
structures accurately and also produces dispersive small-scale features that look similar to the ones in the true
tracer field. The boundaries of the large structures are better captured in Figure 8b than in Figure 7b, as seen by
looking at the black boxed region at the top boundary. The small-scale structures in the cloudy region in the box in
the bottom right also look dispersed, similar to the true tracer. On the other hand, the UNet and GAN predictions
in Figure 8 does not seem to have much improvement compared to the ones in Figure 7; they both look very
diffused in comparison to the true field. The Autoencoder prediction seem to have no improvement. Additionally,
we again see a dot-like structure with tracer signs fluctuating concentrically around it, in the UNet and GAN
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prediction. A dull version of the dot-like structure is present in the Autoencoder prediction as well. The dot
structures have been indicated by yellow rectangular boxes for UNet and Autoencoder in panel (c) and (e) of
Figure 8 respectively. For GAN prediction, the dot structure can be found inside the bigger yellow box in panel
(d). This larger yellow box also contains a checkerboard structure that was not present in the true tracer. Recall
that we observed a similar pattern in GAN-4; predictions for Rossby number 0.3 and energy ratio 0.15 earlier.

Despite the improved spectrum in inertial range, the dissipation range varies quite a bit between models. We see
that the UNet spectrum in red increases in the dissipation range while the GAN spectrum oscillates. Both LoConv
and Autoencoder spectra drop gradually in the dissipation range, with the LoConv spectrum being the
smoother one.

The major qualitative inferences made with the cases discussed above holds for all other cases for which tracer
predictions were made. Since it would consume too much space, we have provided some additional comparisons
in the SI. The predictions for Ro = 0.3 and E-/E; = 0.01, whose tracer field was shown in the top row of
Figure 1, are shown in Figures S3 and S4 in Supporting Information S1, corresponding to predictions from models
trained with no spectral loss and maximum spectral loss, respectively. These figures also contain comparisons of
their spectra. The Supporting Information S1 also contains the predictions for the most extreme case of Ro = 1
and E¢/E; = 0.15, from all the models, along with a comparison of spectra. These are provided in Figures S5
and S6 in Supporting Information S1, corresponding to models trained with no spectral loss and maximum
spectral loss, respectively. The reader will find that the main features discussed above can be seen in each of the
cases shown in the Supporting Information S1.

5.3. Effect of Spectral Loss on Predictions

Neural network models trained to generate image-like objects by learning to reduce L” loss are prone to a spectral
bias towards larger wavenumbers, as shown in Rahaman et al. (2019). This causes the smoothening of predictions
for a lot of models, as we have seen in the above discussion, and is a natural hindrance in problems where small
scales are important. To sort this we gave some weightage to accurately predict the Fourier coefficients for
wavenumbers in the inertial range, implemented by adding a weighted spectral loss in the training loss; recall
Equations 5 and 6. Incorporating spectral loss was seen to improve the predictions, as seen by comparing
Figures 7 and 8. The LoConv model improved with this approach and there is appropriate production of small-
scale features. Nevertheless, this in turn increases the absolute error as seen in Figure 4. In fact, there are several
instances at high Rossby numbers where the UNet with large weightage for spectral loss (A = 4, or A3) has
comparable or even lower absolute error in predictions than that of the LoConv model: recall Figure 4d and Figure
S2 in Supporting Information S1.

Despite UNet predictions having comparable or lower net error than LoConv for certain higher Rossby numbers,
the latter's predictions were consistently much better than the former. To see this, let us take the example in
Figure 8, which has predictions for Ro = 0.7 and E/E; = 0.15, and models are trained with a maximum
weightage of spectral loss A3. In this example the absolute error of both the UNet-1; and the LoConv-4; are
approximately 16%, as seen in Figure 4d. But the UNet-4; prediction in Figure 8c looks like a very smoothed-out
version of the true tracer field and lacks the dispersion seen in the true tracer field in Figure 8a. This can especially
be seen along the boundaries of the large tracer structures, where fine scale features are missed in the prediction.
This is not the case with the LoConv model, as the predictions seem to produce fine-scale dispersive structures.
While these structures generated as a result of enforcing spectral loss are qualitatively correct, they may not
necessarily align pointwise precisely with those of the actual tracer field and this can cause an increase in absolute
error.

Recall that we added a weighted spectral loss in the training loss of the model with the expectation that there will
be a better match in the Fourier coefficients in the inertial range, and hence the production of better small-scale
features. Since the model is trained to minimize the spectral loss along with the absolute loss, we expect a slight
increase in absolute errors, as minimizing one loss has to be compensated with the other. In return we expect to get
better quality of dispersion in the predictions. Figure 9 shows the spectra of predictions from all models compared
with the true spectrum for Ro = 0.7 and E-/Er = 0.15. Notice that the spectrum of prediction from each ar-
chitecture converges to the spectrum of the true tracer field in the inertial range as we increase the weightage 4 for
the spectral loss. As the margin for improvement is least for the LoConv model, spectra in Figure 9a have the least
changes. Specifically, notice in panel (a) that the gap between the blue line, representing LoConv-4, predicted
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Figure 9. Comparison of tracer variance spectrum predictions with varying A for Ro = 0.7 and E¢/E; = 0.15.

spectrum, and the black line, showing the true variance, is minimal in the inertial range. Similarly, the UNet
spectra shown in Figure 9b improves monotonically with increasing spectral weight, covering a larger gap be-
tween the UNet-4, predicted spectrum in blue and the true spectrum in black. In Figure 9c, the GAN spectrum
improves slightly in the inertial range but diverges slightly at larger scales or small wavenumbers. The spectrum
of GAN also starts to fluctuate near the dissipation range after the introduction of spectral loss. Autoencoder
spectra also improve monotonically, but does not match perfectly with the true spectrum at larger scales.

Let us return to the effect of adding spectral loss on the physical structure of predicted tracers. The LoConv model
shows improvement in producing small-scale dispersive structure, as seen by comparing Figures 7b and 8b.
However in the case of UNet, GAN, and Autoencoder, adding spectral loss produces the artificial sharp dot-like
structure where the sign of the tracer field value fluctuates concentrically around the dot region. Similarly, there is
not much improvement in the production of small-scale dispersive structures by these models. The dot-like
structure is very small but can change the Fourier coefficients for high modes. Adding such a structure drasti-
cally improves the spectrum of the prediction while not having much qualitative change in the regions away from
the dot-like structure. Therefore, the UNet, GAN, and Autoencoder models achieve a better match in spectra at the
cost of losing physical structure match due to the production of artificial dots.

Recall that we are based in a doubly periodic domain for the flow and tracer fields and one could enforce
periodicity constraints during the training phase. The different means for this include using circular padding,
training in the Fourier domain with convolution layers, and using complex valued layers, as in Bassey
et al. (2021), to ensure periodicity in predictions. On experimenting with these and related techniques, some
methods led to inferior predictions in the physical domain while other methods ended up being much more intense
computationally. Compared to these strategies, not enforcing any periodicity constraint during the training phase,
expecting the neural networks to learn the periodic features, worked best in our cases. The departure from
periodicity was quite small in our predictions and this is quantified in Text S1 and Figure S7 in Supporting
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Information S1. All the results presented in this work were therefore generated without enforcing any periodicity
constraints in training, since this strategy already gave us good predictions.

5.4. Tracer Flux Computed From the Predictions

The tracer variance is transferred from scale to scale at a rate dictated by the tracer flux. Here we will derive an
expression for tracer flux in physical space and compute it using the tracer predictions. Since tracer flux is a
secondary derived quantity, calculated once the tracer field is known, comparing flux in physical space from
different models serves as a more stringent test for the capability of the models.

We define a filtering operator giving ¢ on operating on any field ¢ such that
gb = F_lq’sk<]} (8)

Above & represents the Fourier transform of ¢, F~' represents inverse Fourier transform operator and the
subscript denotes that all Fourier coefficients except for those with wavenumbers k<k are set to zero. The
filtering operator therefore retains the large-scale part of the tracer field.

Applying the filter operator to the tracer Equation 2 after ignoring the forcing and dissipation terms leads to

g =—(v- Vo) )

Addingv- V 6 on both sides and using the incompressibility condition on the filtered velocity, V-V = 0, gives
0 _ - -
E+V-V6’=V~(v9—(ve)) (10)
Multiplying throughout with & and manipulation gives us

%(%2)+vv(%2) =0V - (V- () = -1 (1

L= . L = -
The quantity & is the total tracer variance contained in large scales or k < k and it is transferred to smaller scales
due to the right hand side term above, which we will identify as tracer flux, II. This is seen more explicitly by
integrating Equation 11 over the bi-periodic domain (D) to get

a (& __/
= D(?>dx— Dde (12)

. . =2 . —
Notice above that domain-integrated @ changes due to the domain-integrated flux. The negative sign appears due
to tracer variance being lost from large to small scales as a result of the turbulent cascade.

We will now look at the flux derived from each of the models. Specifically, we will present results for the case

k = 64, this being an arbitrary wavenumber in the inertial range, as seen in the spectra shown in Figures 5-9.
Other wavenumbers led to similar conclusions as those given below and therefore will not be presented here.

Figure 10 shows the true flux derived from the true tracer field corresponding to Ro = 0.3 and E./E; = 0.15 in
panel (a) and the flux derived from predictions of all models trained with no spectral loss in panels (b) to (e). We
note that all model predictions other than the LoConv model are significantly inaccurate and do not get the major
structures right. The LoConv-4, model prediction in Figure 10b gets all significant structures in the flux field but
looks lighter, that is, has lower magnitude than the true flux. This can be seen, for example, by comparing the
region in the black box in panel (a) of Figure 10 with the same region in panel (b). The structure inside this box is
significantly faded in other predictions, while the LoConv prediction gets the structure with some fading. This is
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Figure 10. Comparison of predictions of physical structure of tracer variance flux and distributions from models with A = A, for Ro = 0.3 and E/E; = 0.15. The
black box highlights a specific region for comparison.
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also evident from the distribution of flux shown in Figure 10f. In the distribution we can see that the frequency of
larger values of flux (away from center or at the tails) obtained by predictions is underestimated compared to the
true flux. On the other hand, smaller values of flux have more frequency in the predictions than they should be
according to true flux. Among the 4, models, the predicted distributions of the LoConv-4, model match the actual
distribution the best, followed by UNet-4,, then Autoencoder-4, and finally GAN-/,. It is also noteworthy that
the Autoencoder's flux prediction is comparable to that of GAN, although GAN had a lower pointwise error for
the tracer field prediction, seen earlier.

Figure 11 contains predictions for Ro = 0.3 and E/E; = 0.15 from all models that have been trained with
maximum weightage of spectral loss, thatis, A = ;. We see that the LoConv-4; model prediction in Figure 11b
is much better now. Notably, the prediction is similar in intensity and does not look lighter than the true flux,
which was the case when no spectral loss was used in Figure 10b. However, the GAN-1; and UNet-A; predictions
in the second row are much worse when using spectral loss with 4 = 3. There is the presence of concentric flux
regions around a central dot, these being highlighted by yellow boxes in panels (c), (d), and (e). These artificial
features are due to the presence of the large dot-like structures in the tracer prediction itself, seen in panels (c), (d),
and (e) of Figures 6 and 8. This causes a lot of flux to be concentrated in the region around the dot, in turn
producing a lighter prediction in the field everywhere else. The distribution curves of all predicted flux seem to
converge to the true distribution in Figure 11f, with LoConv-4; being the closest in orange, followed by
Autoencoder-4; in blue, then the UNet-/; in red, and, furthest, the GAN-4; in green.

The flux for Ro = 0.7 and E./E; = 0.15 from different models is shown in Figure 12 without spectral loss, that
is A = 4y, and these are qualitatively similar to the lower Rossby number case discussed earlier in Figure 10.
Specifically, expect LoConv, the predictions are much lower in magnitude. LoConv gets the key structures right
albeit being a bit lower in magnitude. Correspondingly, the flux distributions in panel (f) shows that LoConv
aligns relatively better with the true flux distribution, although the LoConv predicted frequency overshoots the
low flux region frequency from the true distribution. Other models' distributions are much further from the true
distribution. Interestingly, Autoencoder-4, and UNet-4, have similar distributions, despite UNet-1, having far
less absolute error in the prediction of the tracer field, as discussed earlier. This reaffirms that having lower
absolute pointwise error does not necessarily correspond to better overall prediction.

Figure 13 shows the same regime, Ro = 0.7 and E¢/E; = 0.15, but for models trained with A = A;. From the
top row and panel (f) we see that the LoConv prediction matches the tracer flux physical structure and distribution
very well. UNet, GAN, and Autoencoder however produce artificial concentrated regions of high flux, these
regions being highlighted in yellow boxes in the figure. Additionally, their distributions do not align well with the
true flux distribution, although all the three models more or less are similar in terms of their distributions.

To specifically highlight the effect of weightage on distributions, Figure 14 shows the flux distributions for
different A for Ro = 0.7 and E./E; = 0.15. We see that the distributions of predicted flux converge closer to the
distribution of the actual tracer flux for all model architectures as we increase the weightage of spectral loss.
However, only LoConv gets the low flux region's frequency close to the truth. Other models' predictions are seen
to overshot the truth in the low flux region. As for the tracer structures and spectra, we omit more figures for other
regimes here, but have incorporated the flux derived from predictions for Ro = 0.3 and E./E; = 0.01, from all
the models along with a comparison of flux distributions, in Figures S8 and S9 in Supporting Information S1. The
Supporting Information S1 also contains similar figures for Ro = 1 and E./E; = 0.15 in Figures S10 and S11 in
Supporting Information S1, corresponding to models trained with no spectral loss and maximum spectral loss,
respectively.

Similar to the tracer field, we computed pointwise error of flux from different models and found that LoConv had
the lowest error. In addition, we examined the Pearson correlation coefficient of the predicted and true flux, this
being a more useful variable that checks the relative alignment of structures in the data. The mean of Pearson
correlation across samples from different Rossby numbers and energy ratios can be used to compare the flux
prediction across models. The mean Pearson correlation values of the models are given in Figure S12 in Sup-
porting Information S1. The LoConv models in general had mean Pearson correlation over 0.815, while other
models had Pearson correlation under 0.64. The LoConv models producing best small-scale dispersive structures
are LoConv-4, and LoConv-45. LoConv-4, has mean correlation 0.816, and LoConv-4; has correlation 0.824, a
slight improvement.
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Figure 11. Comparison of predictions of physical structure of tracer variance flux and distributions from models with A = A5 for Ro = 0.3 and E./E; = 0.15. Yellow

boxes contain a region with anomalous physical features.
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Figure 12. Comparison of predictions of physical structure of tracer variance flux and distributions from models with A = A, for Ro = 0.7 and E/E; = 0.15.
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Figure 13. Comparison of predictions of physical structure of tracer variance flux and distributions from models with A = A5 for Ro = 0.7 and E./E; = 0.15. Yellow
boxes contain a region with anomalous physical features.
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Figure 14. Distribution of tracer variance flux with varying weightage of spectral loss for Ro = 0.7 and E./E; = 0.15.

To summarize the comparisons between models, we see that prediction of small-scale tracer structures is very
important as it helps in accurately setting the flux. Considering the different metrics to evaluate our models,
LoConv models unanimously come on top. Among the LoConv models, LoConv-4, and LoConv-1; have the best
spectrum prediction, with almost overlapping spectra, as seen in Figure 9. The LoConv model with A = A5 has the
most visually similar-looking tracer structures compared to the true tracer. It also has slightly better flux pre-
diction. Given these, we declare the LoConv-4; model as the best from the ones we tested and proceed to a
specific application using this model in the next section.

5.5. An Application of Neural Network Prediction

Given the tracer predictions obtained from the neural networks, we now turn to a specific test following a result
from Sirohi and Thomas (2024). Using the tracer flux physical space distribution, Sirohi and Thomas were able to
identify physical space regions that accommodated the dominant share of the tracer flux. This is useful infor-
mation, especially for in situ measurement programs for instance, where there is advantage in identifying the
specific spatial locations where the tracer gets transferred to smaller scales. This information can then be used
along with other flow details found from measurements, such as fronts, filaments, etc in the region of exploration
and thereby helps to connect and associate tracer cascades with specific flow features. Here, we will check how
well such regions can be predicted by the best neural network model seen so far: LoConv-4;.

Following the same procedure as in Sirohi and Thomas (2024), we sorted the flux IT against normalized vorticity
C/ & maxs Cmax DeEiNg the maximum vorticity value at a particular instant. This gives us H({/Cmax) , that is, a one-
dimensional array of flux associated with a one-dimensional array of normalized vorticity. We then performed a
cumulative sum of the sorted flux as
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Figure 15. Cumulative flux, I1. from Equation 13, against normalized vorticity is plotted for four different regimes. In each
case the neural net prediction is shown by the red curve while the true tracer based curve is in black color. Dashed horizontal
lines corresponding to each curve shows the 90 percent flux, this being dropped onto the x-axis by dashed vertical lines.

B ffDH ' H( T < 7’) dx

Above H is the heavy-side function, which takes the value 1 if the condition inside it is true and O otherwise. H is
used to separate out regions in the vorticity field below a given value. The function 1. gives us the fraction of flux
contained in regions where the vorticity magnitude is below a certain threshold, y.

13)

We obtained the cumulative flux I from the true tracer and the LoConv-4; prediction and these are compared in
Figure 15 for four different Rossby number-energy ratio combinations. The plotted curves for each Rossby
number and energy ratio are averages across 10 instantaneous fields. The black curves are obtained using flux
from the true tracer field and the red curves are from flux computed using the LoConv-1; predicted tracer field. In
each panel we have added dashed lines in red and black, representing the value of vorticity at which 0.9 fraction of
total flux is obtained. We will call this point the 90-percent point. To obtain the 90-percent point, we arranged the
values of I, with increasing values of y, and then chose the value of y for which IT_(y) crosses 0.9 for the first
time, and declared that as the 90-percent point. We note that the cumulative flux plots from the model and truth
match very well, and the 90% marker in the black dashed lines almost overlaps the red dashed lines in all cases.

The plot of cumulative flux for Rossby number Ro = 0.3 and energy ratio E/E; = 0.01 are presented in panel
(a) of Figure 15. In this case the 90% of the true flux is contained in a region where the vorticity is below 0.126 of
its maximum magnitude, that is, the true 90-percentile point is 0.126, whereas the predicted 90-percentile point is
0.128. Increasing the energy ratio to Ec/Ey = 0.15 for Ro = 0.3 changes the true 90%-percentile value to 0.089,
and the prediction of the percentile value in this case is 0.086, as shown in panel (b) of Figure 15. We note that

BIJAY AND THOMAS

30 of 36

85U8017 SUOWIWIOD BAII1D (ot [dde sy Aq peusenob ase Sajoile YO ‘8sn JO'Sa|nJ 1o} Akeiq]8ulluO 3|1 UO (SUONIPUD-PUE-SWB)/L0D A8 |IM"ARelq 1 BulU0//SANY) SUONIPUOD PUe SWe | 841 89S *[S202/20/50] Uo Akeiqi8ulluo AS|IM ‘SS9000HCSZ0Z/620T 0T/I0p/W0d A8 1M Arelq puluo'sgndnBe//:sdny wo.j pspeojumod ‘€ ‘SZ0Z ‘0TZSE662



A s> 1 l ° . 3

M\ JGR: Machine Learning and Computation 10.1029/2025JH000655
(a) ¢ for (b) ¢|(90%II) for (c) ¢|(90%]11, ) for
Ro=0.3, E, /E;=0.01 Ro=0.3, E /E,;=0.01 Ro=0.3, E, /E;=0.01

(d) ¢ for Ro=0.3, (e) ¢|(90%11) for (f) ¢|(90%lI1, ) for Ro =

E./E,=0.15

(g) ¢ for

Ro=03,E./E, =0.15 0.3,E,/E,; =0.15

(h) ¢|(90%IT) for (i) ¢|(90%11,.) for Ro =

Ro=0.7, B, /E, = 0.15 Ro=0.7,E./E, =0.15 0.7,E,/E,; =0.15

Figure 16. Left column shows the full vorticity field. From this, vorticity regions that contain 90% of tracer flux computed using the true tracer in shown middle column,
these regions being dimmed in color while green colored region shows the excluded regions that are not part of the 90% flux regions. Right column shows the same
quantity as the middle column, but computed using tracer predicted by the LoConv model with 1 = ;.

increasing the energy ratio actually lowers the 90-percentile point. For Ro = 0.7 and E/E; = 0.15, the true
90%-percentile value is 0.275, and the prediction is 0.276, shown in Figure 15c. For Ro = 1.0and E./E; = 0.15,
the true 90%-percentile value is 0.303 and the prediction is 0.296, as shown in Figure 15d. In general we find that
the LoConv-/; predictions of the 90-percentile values match the true value with great precision.

Once we have the vorticity values that accommodate 90% flux, we can locate those vorticity regions in physical
space and this is done in Figure 16. The left column shows the vorticity field for three regimes, these figures being
the same ones shown in the left column of Figure 1. The middle column shows the vorticity regions from the true
fields that contain 90% flux, the red and blue colors being slightly dimmed here. In green color we have marked
regions that are excluded and do not contribute towards the 90% flux regions. In other words, the red and blue
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regions excluding the green regions constitute physical space regions that accommodate 90% flux. Finally, the
right column shows the same field as the middle columns, based on the neural network prediction. In the top most
row we see that the excluded regions are primarily large coherent vortices. This means that most of the tracer flux
is located outside coherent vortices, in strain dominant regions, these being active tracer stirring sites. As we go
down, the size of coherent vortices decreases and the green regions get more scattered across the domain. These
results are discussed in detail in Sirohi and Thomas (2024), although the highlight here is being able to predict
dominant tracer flux regions from the neural network output tracer field. Simply put, getting the second column of
Figure 16 requires quite a bit of work, such as integrating the tracer advection equation along with the flow
equations followed by computing the flux from the data and sorting it further to get 90% regions. However, just by
knowing the instantaneous flow field, we are able to generate the third column of Figure 16 using the neural
network prediction of the tracer field, without integrating the tracer equation.

6. Summary

In this work we investigated the possibility of predicting passive tracer dispersion by submesoscale flows using
neural networks. The flow was modeled using a two-vertical-mode model and we used the divergence-free
barotropic flow to advect a passive tracer across different Rossby numbers and baroclinic-barotropic energy
ratios. Much of the physical understanding of the flow and tracer dispersion using this model is discussed in
Thomas and Vishnu (2022) and Sirohi and Thomas (2024), but by integrating the flow and tracer equations
simultaneously. Our goal in this work was to develop neural network models to predict the tracer field and its
related quantities, such as spectra, flux, relevant physical space regions, etc from the knowledge of the flow alone,
without separately time integrating a tracer equation.

We used four types of neural network architectures: Autoencoder, UNet, GAN, and LoConv. These models take
in the vorticity field and predict the tracer field. Each of these were trained with four different training loss
functions. The difference came from the weightage given to spectral loss relative to pointwise absolute loss and
was described by a parameter 4. The purpose of the spectral loss was to rectify the predicted tracer spectral
variance in the inertial range. Each combination of four architectures and four values of parameter
A € {49 <) <4y <43} gave us 16 models in total. Note that all architectures other than the LoConv model are
popular architectures based on convolution layers. We designed the LoConv models using custom Local
Convolution layers that act like convolution layers, but their filter weights change as the convolution window
moves in space. This was done with the intention of capturing spatially inhomogeneous dynamics. We then
compared the models' predictions for various Rossby numbers and energy ratios for varying weightage of spectral
loss.

Based on physical structures and point-wise absolute errors, the model architectures can be ranked from worst to
best as Autoencoder, GAN, UNet, and then LoConv. The Autoencoder did not capture the large-scale tracer
structures accurately; the model was seen to create patches of low intensity regions within coherent tracer
structures. The prediction quality of Autoencoder was seen to improve as we increased the weightage of spectral
error 1. The GAN and UNet models both captured the large-scale tracer structures very accurately, but they
failed to capture small-scale features. This was also seen in the spectral tracer variance associated with their
predictions, the variance spectra of the GAN and UNet predictions were seen to fall off at small-scales, often
faster than the Autoencoder. As we increased 4, the inertial range spectra of the UNet and GAN models
improved significantly, but at the expense of loss of coherence in physical structures. The GAN predictions got
smoother, losing small-scale features, while there was only a slight improvement in the production of small-scale
features in the UNet predictions. Autoencoder showed some improvement in small-scale structure prediction,
although these features were not realistic as seen in the true tracer field. In addition, sharp dot-like artificial
structures appeared in the predictions of GAN, UNet, and Autoencoder, along with concentric, fluctuating signs
of the tracer field around it. Finally, the LoConv model precisely predicted the large-scale tracer structures and
had the least deviation of the spectrum away from the true spectrum. This model had the best small-scale and
large-scale predictions among all models. With increasing weightage for spectral loss, the LoConv models got
rid of the small discrepancy in spectrum and also had increased production of small-scale features, reflecting a
realistic tracer field.

The importance of correctly capturing small-scale tracer features was clear when looking at the tracer flux
predictions, this being a derived quantity from tracer predictions. Flux predictions of all models except LoConv
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were significantly inaccurate. Without spectral weight, all model-predicted fluxes were lighter, that is, of lower
magnitude compared to the true flux. As we increased the spectral loss weightage, the LoConv model's pre-
dictions got better. They generated the large and small-scale structures with the correct magnitude. In the case of
GAN, UNet, and Autoencoder, the magnitude of the flux improved, but along with inaccurate structures in
physical space. There were concentric circular patches of flux around dot-like structures that were produced in the
predicted tracer field. Despite having inaccuracies in large-scale structures, the Autoencoder had better small-
scale tracer structures compared to GAN and also sometimes compared to UNet, specifically when the models
were trained without any spectral loss. This was also seen to reflect in the flux predictions. Overall, the LoConv
model trained with maximum spectral loss weightage 15 had the best predictions of the flux field. We then used
this model to predict the physical space regions that contained 90% of the tracer flux and these predictions agreed
very well with those obtained from the actual tracer field, reinstating the advantages of such neural network
models that can directly generate tracer fields once the flow is known.

The ability of neural networks to predict tracer dispersion means that we have a direct functional way of obtaining
the tracer field, avoiding numerical integration of the tracer advection equation. As described quantitatively in
Section 4, this can be a great advantage when tracer predictions are needed for a large set of regimes. In such cases
the computational time needed for direct numerical integration of the tracer equation far exceeds the time needed
for neural networks. Also recall that in the introduction we saw that the number of relevant tracers in an ocean
model can exceed a dozen, and it will be a great achievement if all or most of those tracers can be directly
predicted from the flow using pre-trained neural networks. The LoConv model developed in this study could be an
attractive choice in this direction. LoConv captures local patterns or relations that are highly heterogeneous in
space, this being common in oceanic flows in the presence of bottom topographies and continental boundaries
(Brady et al., 2021; Kunze & Smith, 2004; Moum et al., 2002; Wunsch, 1970).

Despite the prospects for future discussed above, we remind the reader that our present work used an idealized set
up, while in the real ocean there are more challenges. To examine the possibility of predicting tracer fields, we
chose a two-dimensional flow set up based on the two-vertical-mode model. Predicting three-dimensional tracer
fields from three-dimensional flow fields is possible by continuing a similar set-up as ours by simply replacing
two-dimensional convolution with three-dimensional convolution layers, albeit needing higher computational
facility to train the neural networks, as the model size would increase by a factor of the convolution window size
in depth direction, and the ram usage for one forward passage through the neural network and the inference time
would both increase linearly with depth grid size. Additionally, our work was restricted to passive tracers, while
there are many important tracers in the oceans that are active, that is tracers that impact the evolution of the flow
field, such as salinity and heat (Correge, 2006; Jensen, 2001). There are also reactive tracers that interact among
themselves and thereby affect the evolution of the tracers. Planktons that form important ecosystems in the oceans
are an example (Mahadevan, 2016).

One could imagine using online learning with the PDE evolution, for instance, as in Frezat et al. (2022) or
Kochkov et al. (2024), to help in the prediction of active and reactive tracer structures. Additionally, the methods
applied in this work can be extended to predict multiple tracers by increasing the number of output channels. If
these are realized in the near-future, and we get to predict over a dozen tracer fields, including passive, active, and
reactive ones, in three-dimensional ocean model set-ups, that would indeed be a great achievement in the field of
data-driven ocean modeling. We hope that future follow-up of this study can move in that direction.

Appendix A: Flow of Data Through the Neural Networks

In Figure 3, above each icon representing a layer, we have indicated the number of output channels, feature
window size, and stride length as a triad of numbers. The neural network models take input of vorticity in the form
of 768 X 768 arrays and produce output tracer fields as arrays of the same shape. The input is always converted to
a 768 X 768 x 1 array to add a channel dimension. After passing through a convolution layer or a down-
sampling layer, the spatial dimension reduces by a factor of strides. Passing through a convolution transpose
or an up-sampling layer, the opposite happens, and the spatial dimension increases by a factor of strides. The
channel dimensions become as specified in the layer.

In figure 3a, a 768 X 768 X 1 input array passes the first down-sampling layer (red icon) of the Autoencoder. As
specified above this icon, the number of output channels, feature window length, and strides for this layer are 64,
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16, and 8, respectively. The output of this layer has a shape in the form of output length X output breadth X output
channels. The number of output channels is 64, and length or breadth in the output is obtained by reducing the
input length by a factor of strides, that is, 768/8 = 96. So the shape of the output of this layer is 96 X 96 X 64.
Passing the second layer, it becomes 12 X 12 X 128. Then passing the first green icon up-sampling layer, its
resolution increases back, and its shape becomes 96 X 96 X 128. It then passes a convolution transpose layer
with one output channel, indicated by a gray icon. This layer glues together the features learned in the previous
layer and produces an output of shape 768 X 768 X 1. This represents the predicted tracer.

Similarly, in Figure 3(b.1), the diagram represents the UNet as well as the generator of the conditional GAN. Here
again the 768 X 768 X 1 shaped vorticity input after passing through the first down-sampling layer indicated by
the top most red icon on the left of panel (b.1), takes shape 192 X 192 X 256. Then passing through another
down-sampling layer (second from top red icon in panel (b.1)), the shape is 64 X 64 X 256. Consecutively
passing through the down sampling layer, going down the red icon ladder on the left side of panel (b.1), the
extracted output reaches the second last down-sampling layer, where the output, let's call it D_,, has shape
8 X 8 X 512. Then after passing the bottom most down-sampling block shown by red icon in the middle of the
red and green ladders in panel (b.1) the output takes shape of 2 X 2 X 1024. After this it passes through an up-
sampling block (bottom green icon on left of panel (b.1)), and the shape is 8 X 8 X 1024. This is then
concatenated with D_,, the output of the penultimate down-sampling layer, along the channel dimension. We add
both their number of channels to get the number of channels in the concatenated output. This comes out to be
512 + 1024 = 1536, resulting in shape 8 X 8 X 1536. Then after repeated up-sampling and concatenation, a
shape 192 X 192 X 512 array is obtained. This is passed through a final convolution transpose layer indicated by
gray icon on the top right hand side of panel (b.1), and the output of shape 768 X 768 X 1 is obtained. We skip
describing the data flow in the discriminator, as the adversarial movement of outputs has already been explained
in Section 3.6. Moreover, it is a simple convolutional down-sampling neural network, and is only used in training.

As mentioned in the neural network section, LoConv model has a UNet type base along with two LoConv layers
concatenated in between. A similar process of down-sampling, then up-sampling, and concatenation happens in
the LoConv part indicated by the red and green icons' ladder in the lower part of panel (c) of Figure 3. Addi-
tionally, the initial vorticity input is passed through two LoConv layers indicated by blue icons at the top of panel
(c). One of them has a stride of length one and eight output channels. The output £; of this layer has shape
768 x 768 X 8. The other layer has strides of length four and 32 output channels. The output £, of this layer is
of shape 192 X 192 X 32. The array L, is then concatenated with the output of the final up-sampling layer (top
green icon on the right). The number of channels here is obtained by adding the number of channels coming from
each of the concatenating arrays, which is 64 + 64 + 32 = 160. The concatenated output is of shape
192 x 192 X 160. This is passed through a convolution transpose layer (second from top gray icon in panel (c))
to get an output of shape 768 X 768 X 8. Again this output is concatenated with £ with the concatenated array
having shape 768 X 768 X (16 = 8 + 8) and passed through a convolution transpose layer (top green icon in
panel (c)) with one output channel and strides of length one to get an output of shape 768 X 768 X 1.
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