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ABSTRACT: In this work, we compare and contrast the phenomenological changes in passive tracer dispersion at asymp-
totically small to O(1) Rossby numbers using idealized two-dimensional flows generated by a two-vertical-mode model.
With increasing flow Rossby numbers, we find that the forward flux of tracer variance increases monotonically and the
tracer variance spectra show severe depletion of the tracer field, indicating enhanced stirring of the tracer by higher Rossby
number flows. On examining the physical structure of the tracer flux and its connection to strain- and vorticity-dominant
regions in the flow, we find that a major share of the tracer flux is located in high-shear, strain-dominant regions between
coherent vortices at low Rossby numbers, while at higher Rossby numbers, the tracer flux is primarily located in vorticity-
dominant regions that are composed of fragmented bits of vorticity. The tracer field is anticorrelated with the tracer flux,
i.e., tracer variance is higher in physical regions where tracer flux is lower and vice versa. Our results highlight multiple an-
isotropic features of submesoscales that enhance tracer dispersion at O(1) Rossby numbers and emphasize the need to
take these into account while developing parameterizations for large-scale models.
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1. Introduction

Oceanic flows stir tracers such as heat, salt, and carbon
from large scales where tracers are forced to small scales
where they are mixed and homogenized. The features of
tracer stirring strongly depend on the spatial scale considered.
This means that lateral stirring at 100-km scales, 10-km scales,
and 1-km scales will be generically different. Furthermore,
since oceanic general circulation models are often set at
coarse resolutions, tracer stirring processes by flows that are
underresolved need to be parameterized using prespecified
tracer diffusivities, which in turn have profound effects on
model outputs. For instance, lateral diffusivity of tracers pre-
scribed in ocean models can affect circulation strength and
carbon uptake (Gnanadesikan et al. 2015; Ragen et al. 2020;
Busecke and Abernathey 2019; Chouksey et al. 2022). Conse-
quently, an in-depth understanding of tracer stirring at differ-
ent scales is needed to develop accurate parameterizations for
large-scale ocean models.

The O(100)-km mesoscale oceanic flow is characterized by
asymptotically small Rossby numbers and is dominated by
geostrophically and hydrostatically balanced coherent eddies.
Since the balanced mesoscale contains close to 90% of the
flow kinetic energy (Ferrari and Wunsch 2009), significant ef-
forts in the past have been channelized to study fundamental
features of tracer dispersion using idealized quasigeostrophic
and related models (Holloway and Kristmannsson 1984; Klein
et al. 1998; Scott 2006; Smith and Ferrari 2009). Despite the
undisputed role mesoscale flows play in large-scale dynamics,
the last two decades have seen a revolution in recognizing the
importance of submesoscale dynamics in oceanography. In
situ measurements and ocean model outputs have revealed
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the prominent presence of submesoscale flows in different
oceanic regions, these flows being characterized by O(1)
Rossby numbers and an increased departure from balanced
dynamics (Capet et al. 2008; Shcherbina et al. 2013; Brannigan
et al. 2015; Thompson et al. 2016; Poje et al. 2017; Yu et al.
2019; Siegelman et al. 2020). Submesoscale flows with O(1)
Rossby number are seen in many different scenarios, such as
those generated in weakly sheared mixed layers, steep topo-
graphic regions, internal gravity wave—dominant regions, and
regions with fronts, for example (McWilliams 2016; Gula et al.
2015; Clément et al. 2016; Lien and Sanford 2019; Thomas
2023; Boccaletti et al. 2007). Intriguingly, submesoscale tracer
dispersion characteristics are seen to depart from the predic-
tions of geostrophic turbulence theories.

Passive tracer variance spectra have been analyzed from
multiple oceanic observational datasets (Vladoiu et al. 2022;
Spiro Jaeger et al. 2020; Klymak et al. 2015; Cole and Rudnick
2012; Samelson and Paulson 1988), and these datasets indicate
significant variability in spectral slopes, thereby departing
from predictions of geostrophic turbulence theories. Flows
that stir and disperse tracer fields faster will expel tracer vari-
ance from a particular scale to smaller scales at a faster rate,
leading to the depletion of tracer variance at that particular
scale and eventually to steeper tracer variance spectra. Conse-
quently, steeper tracer spectra reported in these studies are
an indication that the stirring processes that operate at sub-
mesoscales are much more efficient than those that would re-
sult from geostrophic turbulence in the small Rossby number
regime. The steeper spectra could be a result of enhanced
horizontal stirring due to the presence of internal waves,
other ageostrophic modes, or frontogenetic processes, while
shallower spectra could be a result of nonlocal stirring (Scott
2006; Smith and Ferrari 2009; Kunze et al. 2015; Vladoiu et al.
2022). On a similar note, oceanic cruises that perform dye
dispersion experiments time and again report significant
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variability in the diffusivity estimates, with the observed diffu-
sivity oftentimes being an order of magnitude or more than
what is expected from theory (Shcherbina et al. 2015; Sunder-
meyer et al. 2020; Kunze et al. 2015; Polzin and Ferrari 2004).
Notably, some of these studies emphasize findings of O(1)
Rossby numbers in their observational sites, hinting at the con-
tribution of ageostrophic flow components on tracer dispersion.

The above suggests that the tracer dispersion characteristics
are different for submesoscale and mesoscale flows. Although
a broad set of studies have examined mesoscale tracer disper-
sion in idealized settings, much less is understood regarding
the role of submesoscale flows on tracer dispersion. Part of
the difficulty lies in the fact that submesoscale flows are gener-
ated in a wide variety of settings, making it challenging to
identify common generic characteristics. For example, low
Rossby number flows with the same total energy can have
highly variable flow dynamics when they have a major fraction
of their energy associated with internal tides, near-inertial
waves, or the internal wave continuum [see the results dis-
cussed in Thomas and Daniel (2021)]. On the other hand, as
Rossby number approaches O(1) values, even a small amount
of unbalanced flow component can make a significant differ-
ence in the flow dynamics [see the results discussed in Capet
et al. (2008) and Thomas and Vishnu (2022)]. In this idealized
study, we focus on tracer dispersion in the latter case, i.e.,
flows affected by the presence of weak unbalanced flow com-
ponents. We specifically use the two-vertical-mode model
used by Thomas and Vishnu (2022) to study tracer dispersion
across different Rossby numbers. Our study is similar to
Thomas and Gupta (2022) who examined tracer dispersion by
geostrophic flows and wave-dominated flows using a similar
two-vertical-mode model in the small Rossby number regime
and found that the presence of waves could enhance tracer
dispersion in comparison to geostrophic flows. In contrast,
here, we examine the role of Rossby number and resulting
flow feature changes on tracer dispersion characteristics.

The plan for this paper is as follows: we describe the model
and the setup in section 2, present the main results in section 3,
and summarize our study in section 4.

2. Flow and tracer equations

To investigate passive tracer dispersion across Rossby num-
bers, we used the two-vertical-mode model studied in Thomas
and Vishnu (2022). The model is derived by projecting the
primitive equations on the barotropic and a single high baro-
clinic mode, n. The model after nondimensionalization takes
the form:

d
% + RoV X [v - Vv, + v Vv + (Vovo)v ]

= fr — A%, (1a)
d
% + 2 X v.+ BuVp. + Ro(vy - Vv + v - Vv,)
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In the above equations, subscripts 7 and C denote the baro-
tropic and baroclinic fields, respectively. Specifically, {7 and
v represent the barotropic vorticity and velocity, respec-
tively, and v¢ and pc represent the baroclinic velocity and
pressure, respectively. Additionally, we obtain two nondimen-
sional parameters in the process of obtaining the nondimen-
sional [(1)]: Rossby number Ro = U/(fL) and Burger number
Bu = (NH/nwfL)*. These two parameters are expressed in
terms of the dimensional variables: rotational frequency f,
buoyancy frequency N, a flow velocity estimate U, an estimate
for the horizontal length scale L, and an estimate for the verti-
cal length scale H. Furthermore, the gradient operator in (1)
is given as V = (9/dx, 9/dy) and the curl operator shorthand
used above is VX v =V X (u, v) = dvidx — duldy.

Since the baroclinic mode is a high mode with n > 1, we
set Bu = 0.01, a small parameter. As explained with the nu-
merical results in Thomas and Arun (2020) using the same
model, while the qualitative results regarding the flow would
be similar in the Bu << 1 regime, a relatively higher value of
Bu would slow down the interaction between the two modes
while a relatively lower value of Bu would speed up the inter-
actions. The forcing terms above, fr and f¢, are different from
conventional forcing schemes that inject a prescribed power
into the system. Instead, the forcing terms above were set to
maintain a fixed amount of energy at large scales (see specific
implementation details of the forcing scheme in the appendix
of Thomas and Vishnu 2022). The barotropic forcing fr main-
tained a constant energy level in wavenumbers k = 5, where
k = |k| = \[k% + k2 is the wavenumber vector magnitude cor-
responding to the horizontal wavenumber vector k = (k,, k,).
On the other hand, the baroclinic forcing f- maintained the
energy level of the spatially homogeneous k = 0 mode, which
corresponds to inertial oscillations. The forcings were set such
that the barotropic energy was O(1) and the baroclinic energy
level was about 10% of the barotropic energy, and therefore a
small perturbation with respect to the barotropic flow. The
hyperdissipation terms, i.e., terms with vA® on the right-hand
side of (1), ensured that the flow energy reaching grid scale
was dissipated smoothly and provided a clear inviscid inertial
range of scales between forced and dissipated scales.

With the above setup, we varied Ro from 0.1 to 1, generating
different flows in forced-dissipative equilibrium with almost the
same energy levels. Waves are contained in the low-energy
baroclinic flow, while the high-energy barotropic flow is
purely a vortical mode. Although the low-energy baroclinic
flow is a small perturbation to the barotropic flow, the baro-
clinic flow significantly modifies the barotropic flow structures
as Rossby number is increased, this being one of the high-
lights of the results of Thomas and Vishnu (2022). The upshot
is that the two-vertical-mode model with a low-energy baro-
clinic flow generates a barotropic flow with a rich spatiotem-
poral structure resembling complex submesoscale dynamical
features at O(1) Rossby numbers. These features include a
forward-flow energy flux, increased small-scale energy dissipa-
tion, and a strong preference for cyclonic coherent vortices
over anticyclonic vortices. The barotropic flow generated
from the two-vertical-mode model is therefore an idealized
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divergence-free two-dimensional flow that shows features of
mesoscale and submesoscale flows at low and high Rossby
numbers, respectively. In this work, we used this idealized
two-dimensional flow to examine tracer dispersion across dif-
ferent Rossby numbers.

Once the flow for a specific Ro reached forced-dissipative
equilibrium, we started time integrating a passive tracer field
0 advected by the barotropic flow based on the tracer equation:

a_[+vT~ve:ﬁ,—aA89. )
The passive tracer field was initialized with random white
noise, and then, the tracer forcing, f, above, forced and main-
tained the tracer variance at wavenumber k = 1, i.e., domain
scale, using the same technique used for the flow forcing until
tracer variance reached a forced-dissipative equilibrium. The
hyperdissipation term, —aA®9 above, dissipated tracer vari-
ance at grid scales, thereby allowing the tracer field to attain
forced-dissipative equilibrium.

We integrated the flow and tracer equations using the pseu-
dospectral method in a domain (x, y) € [0, 2a]* with 11527
grid points, twice the resolution used by Thomas and Vishnu
(2022), giving us the maximum wavenumber as 1152/2 = 576
in both k, and k, directions. We further implemented 2/3
dealiasing in the numerical solver, which set the Fourier coef-
ficients of wavenumbers larger than 2/3 of the maximum
wavenumber to 0, to avoid aliasing errors. Consequently, the
maximum wavenumber after dealiasing was kpax = (2/3) X
576 = 384 in each k, and k, direction. Based on trial numeri-
cal integrations, where we monitored the flow structures and
energy spectra to ensure that small-scale structures were well
resolved and flow energy was dissipated at grid scale, we set
hyperdiffusion coefficient for both the flow and tracer fields
to 1073*. The statistical quantities discussed in the following
section were obtained by time averaging the flow variables af-
ter the flow and tracer fields reached equilibrated states. The
time averaging window was chosen after successive incre-
ments until any further increase had no more effect on the av-
eraged variables. The averaging window varied for different
Rossby number flows, with the longest window of several
hundred eddy turnover time scales being needed for the low
Rossby number flows.

Since we advected the tracer field with the barotropic flow
field alone, hereafter we will drop the subscript 7 for the bar-
otropic flow, with the understanding that the velocity and vor-
ticity fields correspond to the barotropic flow.

3. Tracer dispersion across Rossby numbers

In our numerical integrations, we varied Ro in (1) from 0.1
to 1 with increments of 0.1, thus generating 10 flows with dif-
ferent Rossby numbers. The effective Rossby number of each
flow was then computed as Roeir = Rolrms, Where {rus 1S
the root-mean-square value of the barotropic vorticity field.
Below, we will discuss the changes in various tracer dispersion
features across Rossby numbers. Although we present quan-
titative statistical details for multiple Ro, for convenient
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reading, we will present selected plots, especially when showing
physical field plots, to limit the number of figures. We will specifi-
cally highlight the results for the lowest Rossby number flow with
Ro; = Rogr = 0.2 and the highest Rossby number flow with
Ro; = Roer = 4.3, and occasionally an intermediate flow
with Rossby number Ro, = Rogy = 1.2.

Figure 1 shows the spatial structure of the barotropic vortic-
ity (left column) and the tracer field (right column) with
Rossby number increasing from top to bottom. The low
Rossby number flow is characterized by an inverse energy
flux resulting in the formation of domain-scale, well-defined
coherent vortices with roughly equal number of cyclonic and
anticyclonic vortices. Increasing Rossby number leads to a
forward energy flux for the flow, breaking up of coherent vor-
tices and generating finer-scale structures. Furthermore, the
number and size of coherent vortices reduce with increasing
Rossby number, along with a preference for cyclonic coherent
vortices. These features of the barotropic vorticity, seen in the
left column of Fig. 1, are identical to those discussed in great
detail in Thomas and Vishnu (2022).

Examining the tracer field features in the right column in
Fig. 1, we find that at a low Rossby number, the tracer field is
trapped in the cores of coherent vortices: observe in Fig. 1b
that blobs of tracer field correspond to the locations of coher-
ent vortices in Fig. 1a. With increasing Rossby number, the
generation of small-scale vortical structures accompanying
breaking up of coherent vortices enhances tracer stirring. The
enhancement in tracer dispersion with increase in Rossby
number is clear from examining the right column of Fig. 1
from top to bottom.

The top row of Fig. 2 shows time-averaged horizontal wave-
number spectra for energy and tracer variance for the three
flows shown in Fig. 1. Notice that the energy spectra in Fig. 2a
overlap for the three flows at low wavenumbers. This is be-
cause, as mentioned earlier, all the flows we generated in
forced-dissipation equilibrium by forcing wavenumbers k < 5
have similar energy levels and the energy of each flow is pri-
marily set by the energy content in large-scale structures or
low wavenumbers. With forcing acting at low wavenumbers
and dissipation acting at high wavenumbers, we may associate
the intermediate wavenumber band k ~ 10-100 to the inertial
range, where the effects of forcing and dissipation are least
felt. The inertial range of the spectra in Fig. 2a shows that
with increasing Rossby number, the spectra become shallower
with more variance at high wavenumbers or small scales; this
is expected based on the physical space structures seen in the
left column of Fig. 1 showing energetic small-scale structures
at high Rossby numbers.

The time-averaged tracer variance horizontal wavenumber
spectra in Fig. 2b show striking differences with increasing
Rossby number. Since the tracer field was forced and main-
tained at domain scale with wavenumber k = 1, all the spectra
overlap at k = 1. However, with increasing Rossby number,
we find that the tracer variance content decreases in general
across wavenumbers. Specifically, notice that the highest
Rossby number tracer spectrum (the red curve) is much be-
low the lowest Rossby number tracer spectrum (the black
curve). Tracer variance therefore gets severely depleted
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(a) ¢ for Ro; (b) 0 for Ro;

-7 -7

FI1G. 1. (left) ¢ and (right) 6 for Ro;, Ro,, and Ros. Observe the breaking up of large-scale coherent vortices and the
generation of small-scale structures on the left column from top to bottom, which corresponds to stronger dispersion
of the tracer field in the right column from top to bottom.
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FIG. 2. Time-averaged (a) energy and (b) tracer variance horizontal wavenumber magnitude spectra for three flows
with increasing Rossby numbers. Spectral slopes are noted for reference. (c) Stirring efficiency [(4)] for ¢ = -2, —1,

1, and 2 and (d) time-averaged tracer variance flux.

across scales at high Rossby numbers, which is an indication
of enhanced stirring. It is also noteworthy in Fig. 2b that
the highest Rossby number spectrum is not steeper than the
lowest Rossby number spectrum in the wavenumber band
k ~ 10-100. The depletion of tracer variance across wave-
numbers is therefore not accurately captured by the inertial
range spectral slope. This signals the limitation of using a sin-
gle variable, i.e., inertial range slope, to characterize tracer
dispersion and stirring.

Given the multiscale nature of the flows we are examining,
stirring of the tracer field is variable across spatial scales. To
quantify scale-specific stirring, we computed the g-norm of
the tracer field, defined as (Thiffeault 2012)

6@ = kgo (K210, )" ©)

In the above equation, the tracer variance |A6k|2 at a particular
scale k is multiplied by the wavenumber k raised to a power g
and summed over all the nonzero wavenumbers. Setting
q > 1 gives us an estimate for the tracer field at higher wave-
numbers or smaller scales, while setting g < 0 gives us the
tracer field estimate at small wavenumbers or large scales.
The g-norm therefore provides a weighted estimate of the
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tracer field with respect to spatial scales, as detailed in
Thiffeault (2012), thereby allowing us to compare the scale-
dependent stirring properties of flows. To compare the efficiency
of stirring at different scales across Rossby numbers, we calcu-
lated the stirring efficiency defined as

1611,

Rog

161158,

4)

We computed m for different Rossby numbers, and the results
are shown in Fig. 2c. For all g values, 7 is less than 1 for flows
with Roey > Ro; and further decreases with increasing
Rossby number. Since 7 is defined as the ratio of ||6]|?) at a
specific Rossby number to that at the lowest Rossby number,
7 < 1 indicates that the weighted tracer estimate is relatively
lower at the particular Rossby number in comparison to that
at the lowest Rossby number. This means that a flow with
Rossby number Ro.g is more efficient at stirring tracers than
the Ro; flow, since more efficient stirring leads to faster ex-
pulsion of tracer variance to smaller scales, thereby decreas-
ing tracer variance at a particular scale.

It is also interesting to note in Fig. 2c that the n curves drop
much more rapidly with increase in Roey as we go from
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FIG. 3. (a)—(c) Tracer variance flux in physical space normalized by its maximum value for three different Rossby
number flows. Notice that the flux is higher in a larger area for Ro; than for Ros. (d) Histograms of the normalized flux for
the three different Rossby number flows. Observe that the histograms are wider for low Rossby numbers than for higher
Rossby numbers, indicating that a particular normalized flux value has a higher occurrence at lower Rossby numbers.

negative to positive g values, indicating that stirring is more
efficient at smaller scales than larger scales, as Rossby number
increases. Finally, we see that ¢ = —1, 1, and 2 curves are in
the same range of 7 for a high Ro.g, with the three curves in-
tersecting at multiple locations. This is an indication of the
fact that for a really high Ro.y;, the stirring effects are high at
both scales, leading to similar n values for different g values.

To examine the rate at which tracer variance is stirred
downscale, we computed the tracer variance flux. Taking the
Fourier transform of (2) and manipulating it gives us

X 8,f =10, +F —D,. Q)

In the above equation, the left-hand side represents the rate of
change of the tracer variance contained in the band [k, kpax],
while F; and D, represent the net forcing and dissipation in
the same wavenumber band. The term II; represents the
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tracer variance flux, indicating the rate at which tracer vari-
ance is getting transferred across scales at wavenumber k. A
positive flux implies downscale transfer of tracer variance.
Figure 2d shows the time-averaged tracer variance flux for
the three different Rossby numbers. The flux increases with
Rossby number, with the flux for the largest Rossby number
flow, Ros, being more than an order of magnitude higher than
the flux for the smallest Rossby number flow, Ro;. The rate of
downscale transfer of tracer variance therefore increases with
increasing Rossby number, indicating efficient stirring capabil-
ities of high Rossby number flows.

Examination of tracer variance spectra, g-norm, and tracer
variance flux point toward tracer stirring by flows becoming
more efficient with increasing Rossby numbers, which leads
to an increased downscale tracer spectral flux and variance
depletion at high Rossby numbers. Although the tracer spec-
tral flux reveals increased downscale variance transfer with in-
creasing Rossby number, it does not provide any information
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FIG. 4. (a) Barotropic vorticity ¢, (b) barotropic strain rate o, (c) ¢ restricted to strain-dominant regions, and (d) ¢
restricted to vorticity-dominant regions, for Ro;. The light green shaded regions in the bottom panels are regions
where the field is set to zero. Notice that strain-dominant regions are primarily regions between coherent vortices,
while vorticity-dominant regions are almost exclusively well-defined coherent vortices.

regarding the flow structures in physical space and their role
in stirring and transferring the tracer variance downscale. We
will now investigate the tracer downscale flux in physical
space and its connection to flow structures.

We used a filtering operation to construct the flux of tracer
variance in physical space, similar to that in Thomas and
Gupta (2022), by defining a low-pass filtering operation

0, = F bk = k,)], (6)

where 0 is the Fourier transform of 6 and F ! denotes the in-
verse Fourier transform. The 6 | 1s therefore a low-pass filtered
tracer field that retains only the large-scale component, i.e.,
scales larger than L or wavenumbers smaller than k; = 27/L.
We apply the low-pass filter to (2) and multiply the resulting
equation with 6 , and manipulate to get

02
) v oo @0, v -0 )

_HL
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The above equation governs the time evolution of tracer vari-
ance contained in scales larger than or equal to L. Integrating
over the domain would eliminate the second term on the left-
hand side of the above equation, while the first term on the
right-hand side would not integrate to zero. The II is the flux
of the tracer variance from large to small scales. We examined
I1; and its features for different wavenumbers across the iner-
tial range, and Fig. 3 shows an example flux field for three dif-
ferent Rossby numbers normalized by the maximum flux
value with k; = 80 chosen as the filtering wavenumber.
Figures 3a—c show that the flux takes both positive and neg-
ative values, although the net flux is positive and downscale.
Furthermore, we find that the flux attains high values more
frequently in the lowest Rossby number case in Fig. 3a, while
high flux values are less frequent in the highest Rossby num-
ber case shown in Fig. 3c. This is quantified in the histogram
of the normalized flux shown in Fig. 3d. The normalized flux
values have a lower frequency of occurrence at higher Rossby
numbers. The standard deviation of the flux histograms
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FIG. 5. (a) Barotropic vorticity £, (b) barotropic strain rate o, (c) { restricted to strain-dominant regions, and (d) {
restricted to vorticity-dominant regions, for Ros. The light green shaded regions in the bottom panels are regions
where the field is set to zero. Notice that strain-dominant regions exclude the small coherent vortices, while vorticity-
dominant regions consist of small well-defined coherent vortices and small fragmented bits of vorticity. The black rect-
angular boxes in (d) highlight a coherent vortex and fragmented vorticity pieces.

decreases with increasing Rossby numbers, indicating the in-
efficiency of tracer stirring at lower Rossby numbers where
the flux fluctuates more with respect to the mean compared
to higher Rossby numbers. Using different filtering wave-
numbers, k; gave us similar qualitative results, with the conclu-
sions for k; = 80 applying for any k; across the inertial range.
Due to this, hereafter, we will fix k;, = 80 and drop the subscript
L for the physical flux, identifying it as I for simplicity.

To investigate the distribution of the tracer flux with respect
to the flow structures, we divided the flow domain into strain-
dominant and vorticity-dominant regions based on the Okubo—
Weiss criterion (Okubo 1970; Weiss 1991). Given the barotropic
velocity field (u, v), the normal strain rate and the shear strain rate
were computed as o,, = duox — dvldy and o, = Jvidx + Juldy,
respectively. These components were then used to find the total
strain rate o = /o2 + o2. We then partitioned the flow domain
as strain-dominant regions, o > |¢|, and vorticity-dominant regions,
o < |¢|, where ¢ is the barotropic vorticity. We maintained strict
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inequality to obtain these regions, since only an insignificant num-
ber of points satisfied the equality o = |¢].

Figure 4a shows the barotropic vorticity field for the lowest
Rossby number flow, the same plot shown in Fig. 1a, while
Fig. 4b shows the corresponding strain rate. Figure 4c shows
the barotropic vorticity field constrained to strain-dominant
regions. More specifically, this field was obtained by multiply-
ing the vorticity field in Fig. 4a, with 1 at points that satisfied
o > |{| and 0 at points where o < |{|. Along the same lines,
Fig. 4d shows the barotropic vorticity field constrained to
vorticity-dominant regions. Similar results for the highest
Rossby number flow are given in Fig. 5.

From the bottom panels of Fig. 4, we find that vorticity-
dominant regions are composed almost exclusively of large
well-defined coherent vortices, while the sheared regions be-
tween coherent vortices belong to strain-dominant regions. In
contrast, from the bottom panel of Fig. 5, it is noteworthy that
vorticity-dominant regions contain small coherent vortices
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FI1G. 6. Distribution of normalized cumulative flux as a function of (a) normalized vorticity magnitude and (b) nor-
malized strain. The dashed horizontal line in each panel denotes 90% cumulative flux, and the dashed vertical lines
represent the corresponding normalized vorticity magnitudes and normalized strain rates. The dashed lines in (a) indi-
cate that 90% of flux corresponds to 19% and 38% of the maximum vorticity magnitude for the high and low Rossby
number cases, respectively. The dashed lines in (b) indicate that 90% of flux corresponds to 38% and 69% of the max-
imum strain rate for the high and low Rossby number cases, respectively.

and a lot of small-scale scattered vorticity fragments (high-
vorticity regions). The black rectangular boxes in Fig. 5d high-
light a small coherent vortex and fragmented vorticity pieces.
This feature is a key difference between low and high Rossby
number flows that will be relevant for the discussion below: at
high Rossby numbers, vorticity-dominant regions contain a
lot of incoherent, localized, vorticity fragments, in addition to
small coherent vortices.

We further examine how the tracer flux is distributed as
functions of vorticity and strain rate. For this, we first used
the physical space distribution of tracer flux, vorticity, and
strain rate to express the tracer flux II as a function of the nor-
malized vorticity magnitude |{|/|¢{|max and normalized strain
rate /0 max, respectively, to obtain I(|Z]/|¢max) and T1(0/0max)-
We then used these to find the cumulative flux distribution as
a function of normalized vorticity magnitude and normalized
strain rate as

=1 max $=0/0,.¢
DIERIC) > 1)
I = —F——andll, = ——/—. ®)
H(S) H(S)
s=0 s=0

Figure 6 shows II; and II,, for the lowest and highest Rossby
number flows. The II; is mostly contributed by low vorticity
magnitude regions (Fig. 6a): 90% of the flux comes from re-
gions with vorticity less than 19% of the maximum vorticity
magnitude for the high Rossby number case and 38% of the
maximum vorticity magnitude for the low Rossby number
case. We see a similar trend with strain rate in Fig. 6b for the
high Rossby number case: 90% of the flux comes from regions
with less than 38% of the maximum strain rate. On the other
hand, the low Rossby number case in Fig. 6b shows that the
flux has major contributions from strain rates below 69% of
the maximum strain rate. These reveal that the physical space
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regions with high vorticity magnitude and high strain rate are
regions where only a small fraction of the net tracer down-
scale flux is located. This finding is particularly striking at high
Rossby numbers, where low vorticity and low strain rate regions
are correlated with most of the tracer downscale flux regions.

We further mapped the physical space locations that corre-
spond to 90% of the cumulative tracer flux, and these are
shown in Figs. 7 and 8 for the low and high Rossby number
cases, respectively. Specifically, the vorticity field in those
regions that account for 90% of the net flux, i.e., vorticity
regions that lie to the left of the second dashed vertical blue
line in Fig. 6a, is highlighted in Fig. 7b. In plotting Fig. 7b, we
retained vorticity regions where 90% of the tracer flux is lo-
cated and zeroed out the remaining regions of the vorticity
field, these zeroed out regions being colored light green. On
comparing Fig. 7b with the full vorticity field in Fig. 7a, we see
that the vortex cores with high vorticity magnitudes at the
core are zeroed out or green in Fig. 7b. This indicates that
vortex cores are regions that have little contribution toward
downscale tracer flux. The physical space regions that corre-
spond to 90% of flux shown in Fig. 7b were then further di-
vided into strain-dominant and vorticity-dominant regions,
similar to the procedure used to generate the bottom panels
of Fig. 4, and these are shown in Figs. 7c and 7d. These indi-
cate that the strain-dominant regions between coherent vorti-
ces and vorticity-dominant regions excluding vorticity cores
support the majority of the tracer downscale flux.

Figure 8 shows similar fields for the highest Rossby number
case. Notice that the small cyclonic coherent vortices in Fig. 8a
are zeroed out or green in Fig. 8b, again indicating that most of
the downscale tracer flux is located in regions outside coherent
vortices. On further decomposing Fig. 8b into strain-dominant
and vorticity-dominant regions, we find that the fragmented
pieces of vorticity in the bottom black box in Fig. 5d persists in
Fig. 8d, while the coherent vortex in the top black box of Fig. 5d
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FIG. 7. (a) Full ¢ field and (b) ¢ field constrained to regions that contribute 90% of the tracer variance flux, for Ro;.
The bottom row shows the field in (b) further constrained to (c) strain-dominant and (d) vorticity-dominant regions.
The light green shaded regions in the bottom panels are regions where the field is set to zero.

is zeroed out or green in Fig. 8d. Both the coherent vortex and
the fragmented vorticity in the two black boxes in Fig. 5d are
vorticity-dominant regions, although only the latter region sup-
ports a significant tracer flux. We found this to be a persistent
feature after carefully examining several high Rossby number
flow fields such as those shown in the bottom panel of Fig. 8 at
different well-separated times, namely, vorticity-dominant re-
gions of high Rossby number flows with fragmented vorticity
pieces are responsible for most of the downscale tracer flux.

For further clarity on the relative significance of different
flow regions for tracer flux, we integrated the tracer flux in
strain-dominant and vorticity-dominant regions over the en-
tire domain and computed the fraction of the total flux in
these different regions. Figure 9a shows the variation of these
fractions as a function of Rossby number. At low Rossby
numbers, the flux is mostly associated with strain-dominant
regions, outside coherent vortices, as seen in Figs. 4 and 7. On
the other hand, at high Rossby numbers, much of the flux is
concentrated in vorticity-dominant regions, with regions com-
posed of fragmented vorticity pieces being responsible for
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most of the tracer flux at high Rossby numbers (Figs. 5d and
8d). The tracer variance flux therefore goes through a transi-
tion across Rossby numbers: most of the flux is located in
strain-dominant regions at low Rossby numbers and vorticity-
dominant regions at high Rossby numbers.

Interestingly, tracer variance also goes through a transition,
although this transition is opposite to that of tracer flux de-
scribed above. The fraction of tracer variance 6* in strain-
dominant and vorticity-dominant regions as a function of
Rossby number is shown in Fig. 9b. At low Rossby numbers,
we find higher tracer variance in vorticity-dominant regions,
which is in line with the first row of Fig. 1: tracer fields are
trapped in vortex cores at low Rossby numbers, the vortex
cores being vorticity-dominant regions. Recall that these are
also regions of low tracer variance flux: at low Rossby numbers,
tracer flux is low in vorticity-dominant regions. In contrast, as
seen in Fig. 9b, at high Rossby numbers, tracer variance is higher
in strain-dominant regions, corresponding to where tracer flux is
lower. Therefore, Fig. 9 reveals that the tracer field accumulates
more in regions where tracer variance flux is lower, and the
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FIG. 8. The vorticity field for the Ro; flow with different constrains. (a) The full ¢ field and (b) the ¢ field con-
strained to regions that contribute 90% of the tracer variance flux. The bottom row shows the field shown in (b) fur-
ther constrained to (c) strain-dominant and (d) vorticity-dominant regions. The light green shaded regions in the bot-
tom panels are regions where the field is set to zero. In (d), notice that the coherent vortex in the top black box seen
in Fig. 5d is zeroed out while the fragmented pieces of vortices in the bottom black box appears, as in Fig. 5d. The
physical space region corresponding to fragmented vorticity pieces contribute to the major share of the flux while the

coherent vortex does not.

transition across Rossby numbers is opposite for tracer variance
flux and tracer variance concentration.

4. Summary and discussion

In this study, we investigated passive tracer dispersion by
idealized flows in the low and O(1) Rossby number regimes.
We specifically used the divergence-free two-dimensional bar-
otropic flow from the two-vertical-mode model explored by
Thomas and Vishnu (2022). We found that the flow in the low
Rossby number regime was composed of well-defined coher-
ent vortices, and these vortices were seen to accumulate blobs
of high tracer variance. As Rossby number increased, coher-
ent vortices broke up and generated a lot of small-scale struc-
tures, which in turn enhanced the stirring and dispersion of
the tracer field. Clear enhancement in tracer dispersion was
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observed at higher Rossby numbers compared to low Rossby
numbers.

The stirring of the tracer field across different scales was
compared using the g-norm metric, which revealed that stir-
ring was more efficient across all scales, and even more so at
smaller scales, as Rossby number increased. Furthermore, the
tracer variance spectral flux was an order of magnitude higher
for the highest Rossby number flow than for the lowest
Rossby number flow, indicating that the downscale transfer
of the tracer variance was significantly enhanced at higher
Rossby numbers. The tracer variance spectra revealed that
the increased stirring led to depletion of the tracer variance
across scales at higher Rossby numbers.

We further examined the distribution of the tracer variance
flux in physical space, primarily to identify regions where
most of the downscale tracer flux was concentrated. This
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FIG. 9. (a) Fraction of tracer variance flux in strain-dominant and vorticity-dominant regions as a function of Rossby
number. (b) Fraction of tracer variance in strain-dominant and vorticity-dominant region as a function of Rossby

number.

analysis led to the unexpected conclusion that most of the flux
was located in low-vorticity and low-strain regions. Con-
versely, high-vorticity and high-strain regions, which distinctly
stand out in physical space visualizations, were regions that
contained much less downscale tracer flux.

Using the Okubo-Weiss criterion to decompose the flow
into strain-dominant and vorticity-dominant regions, we found
that at low Rossby numbers, the strain-dominated sheared re-
gions between coherent vortices coincided with the largest tracer
flux. On the other hand, at high Rossby numbers, vorticity-
dominated regions composed of fragmented vortices coincided
with the largest tracer variance flux. Furthermore, we found that
tracer variance was anticorrelated with the distribution of tracer
flux in physical space, i.e., regions that contributed to most of
the flux had less tracer variance and vice versa. As a result,
tracer variance was high in vorticity-dominated regions for the
low Rossby number regime, while tracer variance was high in
strain-dominated regions for the high Rossby number regime.
This stark change in the physical space regions responsible for
the major share of the tracer flux and tracer variance as Rossby
number increased from asymptotically small to O(1) values was
an interesting outcome of this study.

Our findings detailed above reveal multiple key features of
tracer dispersion by O(1) Rossby number submesoscale flows
that differentiates them from tracer dispersion by small Rossby
number mesoscale flows. Of course, the reader will acknowl-
edge that the extreme idealization of the setup we used here,
namely, considering only divergence-free two-dimensional
flows for advecting the tracer field and ignoring the direct effect
of internal waves and other three-dimensional ageostrophic
modes, prevents detailed comparisons to be made with realistic
flows in the ocean. Nevertheless, some qualitative inferences
can still be made. Recall our discussion in the beginning of this
paper pointing out enhanced stirring at submesoscales with
submesoscale diffusivity often being observed to be an order
of magnitude higher than that expected from theoretical
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predictions (Shcherbina et al. 2015; Sundermeyer et al. 2020;
Kunze et al. 2015; Polzin and Ferrari 2004; Spiro Jaeger et al.
2020; Klymak et al. 2015; Cole and Rudnick 2012; Samelson
and Paulson 1988). Some of these diffusivity-measuring experi-
ments injected dye tracers in the ocean and tracked their evolu-
tion to measure the width of the dye streaks as a function of
time, which was then used to compute tracer diffusivity at
those scales. Since we did not introduce tracer locally in our ex-
periments, we do not have a quantitative estimate for tracer dif-
fusivity variation across Rossby numbers. Nevertheless, Fig. 2,
revealing an order of magnitude increase in tracer variance flux
at O(1) Rossby numbers compared to small Rossby number,
and the tracer field dispersion seen in the right column of Fig. 1
indicate that submesoscale flows can significantly enhance tracer
stirring and effective diffusivity, in line with observational results
mentioned above.

We conclude this paper by making a comment regarding
ocean model parameterizations. As mentioned in the intro-
duction, accurate parameterization of tracer dispersion in
ocean models is crucial for predicting several valuable fea-
tures of the ocean state, including the strength of the large-
scale circulation. Large-scale ocean models typically have an
isotropic diffusion coefficient along with a Laplacian or
higher-order Laplacian term to dissipate tracer fields at small
scales. However, as this study shows, the tracer flux and tracer
variance organize themselves around different kinds of flow
structures, emphasizing the anisotropic nature of tracer dis-
persion. It may therefore be beneficial to take into account
parameters such as the local flow Rossby number and the dy-
namical properties of the flow when developing subgrid-scale
parameterizations in large-scale ocean models.
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