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In this paper we investigate the possibility of fast waves affecting the evolution of
slow balanced dynamics in the regime Ro ~ Fr < 1 of a rotating shallow water system,
where Ro and Fr are the Rossby and Froude numbers respectively. The problem is
set up as an initial value problem with unbalanced initial data. The method of
multiple time scale asymptotic analysis is used to derive an evolution equation for
the slow dynamics that holds for ¢ < 1/(fRo?), f being the inertial frequency. This
slow evolution equation is affected by the fast waves and thus does not form a closed
system. Furthermore, it is shown that energy and enstrophy exchange can take place
between the slow and fast dynamics. As a consequence, the quasi-geostrophic ideology
of describing the slow dynamics of the balanced flow without any information on the
fast modes breaks down. Further analysis is carried out in a doubly periodic domain
for a few geostrophic and wave modes. A simple set of slowly evolving amplitude
equations is then derived using resonant wave interaction theory to demonstrate that
significant wave-balanced flow interactions can take place in the long-time limit.
In this reduced system consisting of two geostrophic modes and two wave modes,
the presence of waves considerably affects the interactions between the geostrophic
modes, the waves acting as a catalyst in promoting energetic interactions among
geostrophic modes.
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1. Introduction

The large-scale flow in the atmosphere and the ocean appears to be approximately
in geostrophic balance and thus divergence free (Gill 1982). The scale separation
between fast gravity waves and slowly evolving balanced flow supports this
observation. In a celebrated article, Rossby (1938) used the one-dimensional rotating
shallow water equations (RSW hereafter) to illustrate the phenomenon of geostrophic
adjustment, where an unbalanced initial state attains balance after a long time due to
the radiation of waves away from the local region of excitation. This remarkable result
was due to the fact that the linear potential vorticity (hereafter PV) is independent of
the wave activity and does not evolve in inertial time. Thus, the state of the system
after a long time can be obtained by equating the initial and final PV, and then
inverting the PV to get the velocity and pressure (or height) field. This was followed
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by a series of works that addressed the problem in different contexts and greater
detail (see Blumen (1972) and references therein). The scale separation between
fast waves and balanced flow was used by Charney (1948) and Obukhov (1949)
independently to derive the quasi-geostrophic (QG) equation. The most remarkable
feature of QG theory is that one can track the slow evolution of the balanced flow
without having any information on the dynamics of fast waves in the system.

This was followed by the introduction of the idea of a slow manifold (Leith 1980;
Lorenz 1980), whereby the evolution of the balanced flow is obtained by projecting
the dynamics onto a subset of the whole space. The slow manifold — its existence
and exact definition — has been debated since its introduction (Lorenz 1986; Vautard
& Legras 1986; Lorenz & Krishnamurty 1987). A major challenge to its existence is
the phenomenon of spontaneous generation, by which an initially balanced flow can
develop wave activity in finite time. Although investigations in this direction seem
to indicate the non-existence of the slow manifold in its strict sense as a manifold
of zero thickness in state space, at present, conventional wisdom seems to have
established that in the regime Ro ~ Fr <« 1, where Ro (ratio of rotational time scales
to advective time scales) and Fr (ratio of flow velocity to wave speed) refer to the
Rossby and Froude numbers respectively, often called the QG regime, the amplitude
of the waves excited spontaneously is exponentially small (see Vanneste (2013) and
references therein and Vanneste & Yavneh (2004) for a specific example).

The problem we address in this work is not the evolution of balanced initial
data and subsequent spontaneous generation of waves, but rather the evolution of
unbalanced initial data in RSW and the resulting interaction between the waves
and the balanced flow, both being of comparable magnitude. In such a setting, for
€ = Ro ~ Fr < 1, several works have used formal asymptotic methods to derive the
QG equation in RSW more systematically and establish the absence of the fast motion
affecting the balanced flow up to O(¢). Majda & Embid (1998) in spectral space
and Dewar & Killworth (1995) in physical space illustrated that the geostrophic
field is unaffected by the waves for time scales ¢ < 1/(ef), f being the inertial
frequency. Further numerical simulations by Dewar & Killworth showed a lack of
energy exchange between the waves and the geostrophic modes. From a turbulence
perspective, Warn (1986) used statistical mechanics investigations on RSW to conclude
that after a long time most of the energy ends up with the waves. Warn speculated
about the possibility of energy exchange between waves and geostrophic modes in
the long-time limit. In a low-order truncated forced-dissipative setting, the presence
of gravity waves even after long times was pointed out by Warn & Menard (1986).
Careful numerical experiments on RSW by Farge & Sadourny (1989), however, did
not find any energy exchange between the waves and the balanced flow, although
they found that the presence of inertio-gravitational energy in the system prevented
the inverse energy cascade of the geostrophic flow. Farge & Sadourny did point
out the possibility that artificial dissipation, used for numerical stability in their
simulations, could have prevented the system from relaxing to statistical equilibrium.
The inertio-gravity waves in RSW, due to their specific form of dispersion relation,
do not allow triad interactions (Babin, Mahalov & Nicolaenko 1997; Majda 2002).
Hence, there are no resonant wave triads although the geostrophic modes can catalyse
interaction between wave modes. This was investigated in detail by Ward & Dewar
(2010), who showed that a coherent wave energy distribution can be scattered and
inhomogenized by the geostrophic modes. Numerical simulations of reduced models
and a full RSW system did not find any energy exchange between the waves and
the balanced flow. In an unbounded domain with compactly supported unbalanced
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initial data, which is the classical setting for the geostrophic adjustment problem, the
waves do not influence the balanced flow even with nonlinear interactions due to their
rapid propagation away from the initial region. Reznik, Zeitlin & Ben Jelloul (2001)
(RZB hereafter) used multiple time scale asymptotics in such a setting to argue that
the waves do not affect the balanced flow up to ¢ ~ 1/(€*f) in RSW. Reznik &
Grimshaw (2002) further investigated the adjustment problem in the half-plane, i.e.
in the presence of a boundary at y =0, a setting that can support Kelvin waves. For
different sets of initial conditions considered, except in the case of periodic initial
data in x where the Kelvin waves were seen to affect the evolution of balanced
dynamics, geostrophic adjustment leading to the slow evolution of the balanced flow
unaffected by the waves was observed in all other cases. In a barotropic rotating fluid,
without making the classical traditional approximation, i.e. neglecting the projection
of Coriolis force on the rotating plane and in the absence of hydrostatic balance,
Reznik (2014) showed that gyroscopic waves can affect the evolution of balanced
dynamics in the long-time limit.

At present, conventional wisdom seems to be that in the regime Ro ~ Fr < 1
of RSW with unbalanced initial data that can excite inertio-gravity waves and
balanced flow of equal magnitude, the geostrophically balanced flow evolves slowly,
as described by the QG equation, unaffected by the waves, while the balanced
flow can catalyse interactions between the fast waves. The possibility of fast waves
influencing the balanced flow in this regime still remains an open question, in spite
of the many advances that have been made in geophysical flows. The differences
in the various types of models used (forced-dissipative, truncated-inviscid, etc.) in
the numerical works previously described also lead to different answers. The only
theoretical work that has investigated the state of unbalanced initial conditions for
very long time scales (¢~ 1/(€2f)) in this particular parameter regime of RSW with
an eye on the possibility of inertio-gravity waves affecting balanced dynamics, to
the best of the present author’s knowledge, is RZB, their set-up being an unbounded
domain with compact initial data, leading to geostrophic adjustment. This sets the
main motivation for the present theoretical work aimed at investigating the possibility
of fast waves affecting the balanced flow by investigating the evolution of unbalanced
initial data in RSW.

We use the method of multiscale asymptotics to investigate fast—slow interactions
in RSW. The initial conditions are arbitrary or unbalanced with data that would
project on fast modes and balanced flow, the fast part consisting of inertio-gravity
waves and inertial oscillations. Periodic and unbounded domains are given particular
attention in the analysis. The periodic domain is given special emphasis as in such a
setting the waves do not radiate to infinity leaving behind the balanced flow. In real
geophysical flows such as in the atmosphere or the ocean, waves and balanced flow
interact continuously for very long times. A finite domain with periodic boundary
conditions acts as the simplest test bed to study such long-time interactions between
waves and balanced flow.

In §2, we proceed systematically using asymptotics to derive a higher-order slow
evolution equation in RSW that is valid for r < 1/(€2f), i.e. a time scale exceeding that
of QG dynamics (which is ¢ < 1/(ef)). This new slow equation, accurate up to O(e?),
is used to argue that waves can influence the slow dynamics. We then show that the
slow energy equation is not closed, but can exchange energy with fast waves. Potential
enstrophy, which is seen to be an exact invariant of this new slow equation, is also
affected by the waves. In § 3, we set up the problem in a periodic domain and use
resonant wave interaction theory to construct a simple reduced system that illustrates
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fast waves influencing balanced flow. In this special system, the waves act as catalysts,
modifying energy exchange between geostrophic modes. Section 4 summarizes the
findings of the present work.

2. General results

We will use the method of multiple time scale asymptotics (see, e.g., Ablowitz
(2011), Chap. 4 for the particular method that we employ) to investigate the interaction
between fast modes and slow balanced flow in RSW. Although the analysis in
this section is quite general, we will later place special emphasis on periodic and
unbounded domains. In the case of unbounded domains, compact support for initial
data is not strictly enforced.

The RSW equations representing a thin layer (small aspect ratio) of fluid on a
rotating plane are

2

a
—v+f><v+th+V <v2> +Zx¢v=0,

ot @2.1)

ah
o TV (H D) =0,

where f =fZ is the constant rotation rate (Z is the unit vector along the z direction),
£z=V x v is the vorticity, g is the acceleration due to gravity, H is the constant mean
fluid height and £ refers to the fluctuations about the mean, which will be assumed
to be asymptotically small with respect to H in this work.

We scale variables as x — /gH/fx, t — t/f, v— Uv, h — U/\/gH Hh, where the
deformation scale, /gH/f, is a natural length scale arising in RSW systems. For this
scaling, € =Ro=Fr=U/./gH, where Ro and Fr are the Rossby and Froude numbers
respectively and our interest is in the regime € < 1. To capture the slowly evolving
dynamics, we define a slow time scale, T = €¢, and split the time derivative in the
above equations as d/dt — 9/dt + €9/dT. The previous equations are then modified
as

2
aal;+2xv+Vh+e<g;+V(v2> +2x§v>:0, (2.2a)
3h+v-v+e(athV-(fzz;)):o, (2.2b)
ot aT
% . (8q+v.(q.,)> =0, (2.20)
ot T

where (2.2¢), the evolution equation for the linear PV, ¢ = ¢ — h, was obtained by
subtracting (2.2b) from the curl of (2.2a).
We define averaging over fast time as

T
¥ (x, T) = lim ; / vx, 1, T)dt, (2.3)
0

T—o0

so that all variables may be split into a slow and a fast part as ¥ (x, 2, T) =¥ x, T) +
V' (x,t, T), such that ¥’ =0.
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2.1. Asymptotic analysis
All fields are now expanded in asymptotic series:

W, h,qg..)= o, ho,qo..)+e@i, hi,qr..)+€ W, hoyqgo..)+---. (2.4)

O(1) equations
The equations at leading order are linear:

dvy .
W +2Z X vy+ Vho = 0, (2561)
ah
0 vy, =0, (2.5b)
a1
9qo
40 _ o, 25
o (2.5¢)

The solution of the above linear system can be split into three different parts — inertial
oscillations, inertio-gravity waves and a geostrophically balanced part (represented by
subscripts ‘10°, ‘W’ and ‘G’ respectively hereafter). We write the solution of the
above system as a sum of these different parts:

Vo ="V;0 + Vy + Vg, ho = h[() + ]’lW + hc;. (2661,19)
The equations that each of these parts separately satisfy are
v N v n A
10+z><v,0:0, —W—{—zva—I—VhW:O, ZXvs+Vhs;=0,
t ot @2.7)
%) ohw '
=0, —+V.vy=0, V.v5=0.
ot ot v ¢

Inertial oscillations are spatially uniform and are pure oscillations at inertial frequency.
The height field of inertial oscillations is constant and is thus set to zero, i.e. h;p =0,
since the constant mean height has already been removed. Inertio-gravity waves have
superinertial frequency and form the fastest evolving part of the linear system. On the
other hand, the divergence-free geostrophically balanced part does not evolve in this
fast time (as may be inferred from (2.5¢) and (2.8) below) but is expected to evolve
on a slower time scale. Of course, the fast waves will also evolve in this slow time
scale. From (2.7), it follows that

gw=0<% ¢w=nhy and (2.8a)
qo =g = (A — Dhg, (2.8D)

where A = 9%/0x* + 92/3y*. Equation (2.8a) implies that the leading-order PV is
unaffected by waves, since the vorticity and the height field associated with the waves
are equal. We shall make use of this relationship, i.e. (2.8a), in several algebraic
manipulations that follow.

Thus, at leading order, a strict splitting exists between balanced and unbalanced
fields, with the fast unbalanced part consisting of inertio-gravity waves and inertial
oscillations, and the slow part consisting of geostrophic balanced flow. This splitting
may be expressed as

vo=0ox, T)+vy(x,1,T), V=g and vy =10+ vy, (2.9a)
ho = ho(x, T) + hy(x, 1, T), ho = hg and hy = hw, (2.9b)
q9=q,x, T)+qyx,t,T), ¢y=qgc and g, =0. (2.9¢)


https://doi.org/10.1017/jfm.2015.706
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

Downloaded from https://www.cambridge.org/core. The University of North Carolina Chapel Hill Libraries, on 03 Feb 2020 at 16:32:11, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/jfm.2015.706

Resonant fast-slow interactions in rotating shallow water 497

O(€) equations
The equations at this order are

8v1 8])() A ( + )_I_V h + v(2) 0 (2 10 )
—_— + X e p— .
ar | ar W S0 ) ' ¢
oh oh
a—t' + 8—; + V- (v1 + hovg) =0, (2.10)
aq, 9o
L4 v. =0. 2.10
dt aT (G0v0) ( ©

We split the solution of the above system into fast and slow parts as

v =0, T)+vx 6,7, h=hxT) +hxtT), qg=q&x7T) +4x1tT),

- (2.11a—c)
such that v} =h} =¢; =0. For arbitrary initial data, the initial condition at O(¢) (which
may or may not be zero) will be satisfied by the sum of the fast and slow parts of
each variable. We then substitute (2.11) into (2.10) and average in fast time to obtain
the slow equations:

g . — R
7+ZX(U]+§Gvg+thw)+V h]+7+7 =0, (2126!)
oT 2 2
dhg _ -
aiT +V . ('U] +l’leg+l’lwvw) =0, (212b)
a
a—qTO V- (qove) =0. (2.12¢)

It should be noted that interaction terms of the form IO-IO and IO-W do not
appear in the above slow equations due to the spatial homogeneity of 10s. Equation
(2.12¢), which arises as a solvability condition for extending the validity of multiscale
asymptotics to 7~ O(1), is the famous QG equation. At this order of asymptotics, the
fast modes do not affect the slow evolution of the balanced flow, and as a result one
can describe the slow dynamics of the balanced flow without having any information
on the fast modes.

We now use (2.12) to obtain the O(e) slow velocity field. Unlike the case at leading
order, (2.9), an exact splitting between balanced and unbalanced modes does not exist
anymore and the slow velocity field at O(¢) consists of wave—wave (WW) interaction
terms in addition to geostrophic—geostrophic (GG) terms. We will split the slow terms
we obtain at this order of asymptotics into two parts — a part that emerges from wave
interactions alone, and the remaining part that would be present even in the absence
of wave activity. From (2.12a) and (2.12b) we obtain

51 zilW +v|G, where (21361)
_ — v
Viy=—hyvy +ZxV > and (2.13b)
B R Vg B
'U]G=—§G'UG+ZX 87T+V hl—f—? , (2136‘)
dhg _
N _ _v.3, (2.13d)
oT
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where vy is the fast-time independent part of v, due to nonlinear wave-wave
interactions and v,s is the remaining part of the slow velocity field. In the absence
of waves, v =v;5. Equation (2.13d) follows directly from (2.12b) if we observe that
V . (hgvg) =V - (hyvy) =0 (using (2.7)). It should also be noted that since (2.12a,b)
are not linearly independent (but are related via (2.12c¢)), (2.13d) is not a separate
condition but may be obtained by taking the divergence of (2.13a) and then using
(2.12¢). From (2.13a) we obtain

G =¢—h=2-(Vx9)—h=q,+G, where (2.14a)

2
_ R . v P i —
qlw=;lw=z.(vxle)=A7W—h%V—z-(Vhwva) and  (2.14b)

2
_ — _ — — v
Gi6=8C1c—Mm=2-(VXxvig) —hi=(A—1Dh + A?G —V - (&:Vhg). (2.14c)

Here, similarly to the velocity splitting, we split the slow PV at O(e) into two parts,
identifying a part that depends only on wave interactions. If the initial data were
completely balanced, g, = q,;. Subtracting (2.12¢) from (2.10c) gives the fast PV
equation at O(e):

g dhy
Yl =V {qo(vio +vw)} = Qo ~Vw* Vgo = vi0 - Vo, (2.15)
which can be integrated to obtain
4y =dyw +d1;0» Where (2.16a)
dyw = qohw — Vqo - /t vydr and (2.16b)
d10=—Vq0- /l Vo dt. (2.16¢)

Here, [ " stands for evaluating the integrated function at ¢r. (We note that the
expressions in (2.16) can be expressed in alternate forms. For instance, from
(2.7), one can show that (9?/0#*> + 1 — A)vy = 0, which may be used to obtain
Vg - ft vwdt = {Vgo-[(A—1)"'vy]},. Similarly, Vg - ff viodt = —{Vqo - vio};.
From these alternate expressions, it is easier to see that ¢}, =¢},, =0. An equivalent
alternative approach is to use the primitive of fast variables, as in RZB (see their
equations (3.35) and (3.33)).)

Thus, at this point we have obtained the full PV at O(¢), given by the sum of
(2.14a) and (2.16a), and the fast-time independent part of the O(e) velocity field given
by (2.13a). To obtain a higher-order slow evolution equation of RSW valid for 7 <
1/€2, we rewrite (2.12c¢) as

% + V. (qovg) =€P(x, T) + O(e?). (2.17)
We will obtain the correction term @ by eliminating resonance at the next order of
asymptotics (O(e?)). We also retain an ‘O(e?)’ on the right-hand side of the above
equation (a convention that we shall follow hereafter) to emphasis that this higher-
order equation that we derive holds for T < 1/e, but not for T > 1/€. The reader
is referred to appendix A for more details related to this technique of obtaining O(e)
correction terms by preventing resonance at O(e?) and thus obtaining an equation valid
for time scales t < 1/€2, and also for a comparison with multiscale asymptotics using
two slow time scales.
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O(€?) equations
The PV equation at this order is
dq dg

8; + O, T)+ 8Tl +V - (qov1 4 q1v9) =0. (2.18)

Substituting (2.9) and (2.11) into (2.18) and averaging over fast time leads to

9

d(x, T
(x )+8T

+ V- (qv +q,v6 + ¢ vw + q1,0v0) =0, (2.19)
where, once again, we note that interaction terms involving inertial oscillations and
inertio-gravity waves do not project onto the above slow equation. Furthermore,
the interaction term above due to inertial oscillations remarkably cancels, as shown
below:

t
V- Goao) = V0 Vg = —(i0- V) ( / di(vgo - V)) "

. 2
- _<</ dt(v,O-V)) q;) =0. (2.20)

Thus, inertial oscillations do not affect the balanced flow up to O(e?).
Using (2.19) and (2.20) in (2.17) gives

9 o
ﬁ(% +€g,) + V - {(qo + €,)vG + €qoV; + €4y vw} + O(*) =0, (2.21)

which can be written using (2.13a) and (2.14a) as

el _ _
ﬁ(qo‘Fa]lG"’e%w)
+V - {(qo+€q,5+€q,y)Vc+ €qoVi6 + €qov1w + €9 yow) + 0(e*) =0. (2.22)

Equation (2.22) is the slow evolution equation of RSW (2.2) for arbitrary initial data
up to O(e?). With the O(e) correction terms, this equation describes the evolution
of the slow dynamics of RSW for arbitrary and unbalanced initial data for ¢ < 1/€2,
(2.12¢) being the slow evolution equation for time scales ¢ < 1/¢. One can also express
the above equation in an expanded form using the O(¢) fields that we obtained before.
For instance, substituting (2.13b,c), (2.14b,c) and (2.16b) into (2.22), we obtain

2

8 — vG E 5 N R
87 (A—l)(l’lc+6h1)+€ A7—V'({GV}IG)—FA?—hW—Z'(Vthvw)

+v.

{(A — D(hg + €hy)

2

R g — v}
- v (h+-=<
+€qO{ {GUG+ZX{8T+ ( 1+ 2)}}

vZ v2, e —
+ € A——V-(;GVhG)+A7—hW—z-(VhWva) Vg
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viz 1
+ €2 x qV 7W —e(VqO-/det>vW

+0(») =0. (2.23)

Equation (2.23) which describes the slow evolution of the total slow height field hg +
€hy (or hy+ €hy) is influenced by the fast waves and hence by itself does not form
a closed equation. An equivalent slow evolution equation for the waves along with
(2.23) will form a coupled system that describes the fast—slow interactions in RSW
for very long time scales.

In the absence of waves, one simply sets the wave interaction terms in (2.22) to
zero to obtain the slow evolution of balanced data:

0 _
ﬁ(% +€G16) + V- {(qo + €G16)v6 + €qovic) + O(€®) =0, (2.24)

or in expanded form (which follows directly from (2.23))

O LA~ Dhe +eh A% . (VR
ST{( — )(G+€1)+€< 5 - (Lo G))}

2
+V. H(A — 1) (hg +€h) + € (szc -V. (gGVhG)>} Vg
R g B 5
+eqo | —LeVe +2 % 8—T+V h1+7 +0()=0. (225

The slow evolution equation (2.24) or (2.25), unlike (2.23), forms a closed system
since it is unaffected by fast waves. This higher-order balance equation, (2.12¢) being
the lower-order one, is in the same spirit as quasi-geostrophy since it describes the
evolution of the balanced slow height field (h¢g + €h;) by completely ignoring the fast
waves (note that knowledge of hg fixes all other geostrophic terms in (2.25) using
the linear relationships (2.7) and (2.8b)). With initial conditions for hg + €h;, one
may numerically integrate (2.25) (or equivalent forms — see appendix B) to track the
evolution of slow balanced flow ignoring fast waves. Furthermore, (2.24) conserves
energy and enstrophy, as we show below.

Although a generalized higher-order slow equation for the evolution of arbitrary
initial data in RSW (such as (2.22) or (2.23)) does not seem to have been derived
before, several authors (Allen 1993, Warn et al. 1995, RZB) have obtained equivalent
forms of the higher-order balance equation (2.25) in different settings. For instance,
while Warn et al. (1995) ignore fast waves and use slaving principles to obtain
the higher-order balanced equation, RZB admit arbitrary but compact supported
initial data that lead to the dispersive decay of wave fields, leading to geostrophic
adjustment. Since our approach is closest to that of RZB, using multi-time-scale
asymptotics, we show in appendix B that our slow equation devoid of wave activity,
(2.24), is equivalent to the higher-order balance equation of RZB.

We conclude the derivation of higher-order slow equations by emphasizing that if
the initial data are arbitrary and can excite fast waves, the slow dynamics is affected
by fast waves, and thus the slow evolution equation is not closed in the long-time
limit. This breaks down the basic idea of quasi-geostrophy since to track the slow
dynamics, one needs to know the parallel evolution of fast dynamics, due to the fast—
slow coupling.


https://doi.org/10.1017/jfm.2015.706
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

Downloaded from https://www.cambridge.org/core. The University of North Carolina Chapel Hill Libraries, on 03 Feb 2020 at 16:32:11, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/jfm.2015.706

Resonant fast-slow interactions in rotating shallow water 501

The special case of an unbounded domain with compact initial data

It is interesting to note that in the case of an unbounded domain, if initial data have
compact support, the interaction terms due to waves identically vanish. This is because
in such a set-up, the amplitude of the waves decays as 1/¢z, as demonstrated by RZB
using the standard stationary-phase calculation. For instance, in (2.130),

v2 1 (Te
thW~2~~1im~/ =07, =0, (2.26)

T—o00

Other wave—wave terms also vanish in similar fashion on averaging, and as a result
the slow evolution equation is devoid of wave activity. Thus, although the initial data
are arbitrary and thus unbalanced, the balanced flow remains unaffected by the waves
up to O(e?), and an adjustment to a balanced state would always exist in such a set-up.
Due to the algebraic decay of wave amplitudes, RZB mention the possibility of a lack
of fast modes affecting the balanced flow even in higher-order correction terms.

However, in a generic domain, the wave interaction terms are non-zero and thus the
waves will affect the slow dynamics of the balanced flow. As a consequence, solving
for the slow dynamics of the balanced flow would require knowledge of the wave
dynamics.

2.2. Energy and enstrophy exchange between waves and balanced flow

Energy and enstrophy of RSW
We now investigate the possibility of energy and enstrophy exchange between fast
and slow dynamics. We begin by recalling the energy equation of RSW (2.2),

4 arenZ+ N0 2.27)
T Wyt /=% '

where we averaged over the fast time 7 and ( ) refers to the spatial averaging
operation. For example, in the case of a periodic domain [—L,, L] x [-L,, L,],

1 Ly Ly
F)= Fdxdy, 2.28
(F) AL /_LX /_L y (2.28)

whereas the limit L,, L, — oo would be taken in the case of an unbounded domain. We
substitute the asymptotic expansions (2.4) in (2.27) to obtain the energy conservation
equation of RSW up to O(e?),

U ten () wevo-vt (B 4 eton ) ) + 0 =0 (2.29)
— € — €Vo -V —+e€ €)=0. .
a7 o) {5 0° 5 0/
Another integral invariant associated with RSW is the Ertel potential enstrophy. This
Casimir corresponding to (2.2) is given by (after fast time averaging)

NS .
dT \ (1 +€h)
Now, X 2 2

(1+€0)>  {(I1+eh)+eqf 4

Axeh) = (tem —\Tett2o+e—a. 2.31)
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where we used ¢ = ¢+ h. Substituting (2.31) in (2.30) after simplification gives

E%fﬂ—f@f+0&%:0 (2.32)
dr ' '

Substituting (2.4) in (2.32) gives the enstrophy equation up to O(e?),

d
ar —(q3(1 — €hg) + 2€qoq1) + O(€*) = (2.33)

The slow energy equation
After multiplying (2.22) by hs and some rearrangements, we obtain

990 _ _
hGaiT +E {hG(qlc+CI1w)}

+V. {hG((Clo +€q,c+€q, )6+ €qo(Viy +V16) + €4y vw)}

_ ahG ohg -
—€ +qoVhe Vi + Gy aT +qoVhg - viw+ (Vhg - vw)q,y
+0(e?) =0. (2.34)

After some straightforward manipulations, we obtain the energy equation corresponding
to the slow dynamics (the reader may refer to appendix C for the details involved in
the derivation),

d v I d
dr (1+€hc)*+7+6(vc Vig + heh) :—Eﬁ(vc Viw)

v dh dvg — '
—6<<2W> a;-l-a;'hwvw>+€<(VhG'vw) (VQO'/ det>>

+0(*) =0. (2.35)

It is seen that the energy associated with the slow equation is not conserved, but
contains terms that are potentially capable of energy exchange with fast dynamics. To
see this more explicitly, we substitute (2.6) (ignoring inertial oscillations) and (2.11)
in (2.29) to obtain the complete energy conservation equation of RSW up to O(e?),

d v2 h2
ar (1+€hc)*+7+€(vc Vig + hehi)

2
L — [

+(1+€h0)7+7+€ thW°vG+vG'v1W+vW‘v/1+hwh/|+hW?

+0(*) =0. (2.36)

On comparing (2.35) and (2.36) we see that only part of the total energy is
associated with the slow equation, which itself is not conserved, i.e. it may be
exchanged with the fast dynamics (in particular, note the appearance of terms such as

d(hgg/Z) /dT in the full energy conservation equation, (2.36), while part of the term,
((0hg/0T)v%,/2), appears in the slow energy equation, (2.35)). A long-time evolution
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equation for the fast waves and the corresponding energy equation associated with the
fast dynamics would in combination with the slow energy equation, (2.35), close the
energy budget, yielding the total energy conservation equation, (2.36). Thus, energetic
interaction between the fast and slow dynamics is possible in the long-time limit. We
also note that in the absence of waves, the slow evolution equation associated with
balanced dynamics, (2.24), exactly conserves energy, given by

2

d UZG hG — 7 2
ar (1+€h6)7+7+6(vG‘vlc+hGh1) + 0(e”) =0, (2.37)

which may be obtained by setting all wave interaction terms in (2.35) (or (2.36)) to
zero. We therefore conclude that the energetics associated with the balanced flow is
different in the presence and absence of waves.

The slow enstrophy equation
To obtain the potential enstrophy equation corresponding to the slow dynamics, we
multiply (2.21) by gy and after some manipulations we obtain

0 _ g _ _ N A
ﬁ(qé +€qoq,) — 877?(610 +eq)+ V- {610 ((QO +€q,)vg +€qov; + 66]1wvw)}

2
_ q — P
—(vG'VqO)(qO+€q1)_6V (20> -V —GVqO-qIWUWzO(EZ)

0 [q? _ 990 _ a5
=>8T<2O+GQO‘11>—€<8T+UG'VCIO q9,—-V- EOUG

qz qz -
—€V. (201)1> +650V V1 —€Vqo - qryvw
+V - {0((go + €716 + €401 + €1y o)} = O(€). 238)

We further observe that

t
Vao-qiwow = Vqo- {QOhwvw - <V40 / Vy dt> vw}
2 1 t 2 2
=V. @hwvw -5 / Vgo-vydt) =V. @hwvw , (2.39)
2 2 . 2

where we used V - (hyvy) =0. Using (2.39), (2.17) and (2.13d) in (2.38) and spatially
averaging gives

d /q - 45 dhe 2
_ 0 77C 0 =0. 2.40
dT<2+“’°q1> 6<2 or ) TO€) (240)

9 2 2
hGaiT (qu)> +V. (qzohva> = 0(6)

2
N <hGaaT <"2°> > — 0(e?). (2.41)

From (2.17),
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Combining (2.40) and (2.41) gives

d

2
q _
ﬁ <20(1 —GhG)+€q0ql>+0(62):0. (242)

Thus, (q6/2)(1 — €hg) + €q0q, is an exact integral invariant of (2.21). It should be
noted that this invariant is the Ertel potential enstrophy of RSW accurate up to O(e?),
as we obtained in (2.33). Using (2.14b,c), we rewrite (2.42) as

d ‘]3 — d — 2
ar E(I—th)‘FGQOQIG =_Ed7<QOQ1w>+0(€)

- 4 <qg(1 — ehe) + €qo ((A i+ a% . (¢GVhG>>> (2.43)
ar \ 2 2
d D 5
= —Gﬁ qdo A7 — hW —ZX- (VhW X vw) + O(E ) (244)

Thus, although the potential enstrophy is an integral invariant of the slow evolution
equation that we derived, it consists of contributions from waves and balanced
dynamics. Hence, only part of the total enstrophy will be obtained if we just track
the slow evolution of the balanced flow, ignoring fast waves.

The analysis in this section leads to the conclusion that the long-time evolution of
slow dynamics in RSW is affected by fast waves, or, in other words, prediction of
slow dynamics requires knowledge of the evolution of fast waves. If unbalanced initial
data are allowed to evolve in RSW, an adjustment towards a balanced state cannot take
place in a generic domain where wave activity does not diminish due to dispersive
propagation or dissipation. As a result, QG theory, by which one can predict the slow
evolution of the balanced flow only by using the balanced part of the initial data, fails,
since knowledge of the fast fields becomes equally important.

If waves are absent or artificially filtered, a balanced flow evolves, as given by
the higher-order balance equation. This equation conserves energy and enstrophy and
thus forms a closed system. In the presence of waves, however, the slow equation is
affected by the fast dynamics, and so are the energy and enstrophy associated with
balanced dynamics. Thus, the dynamics of the balanced flow is expected to differ in
the presence and absence of fast waves.

Although the interaction terms we derived are of O(e) for T ~ O(1), significant
interactions and energy and enstrophy exchanges between fast waves and the balanced
flow are possible in the long-time limit as 7> O(1). To demonstrate that considerable
fast—slow interactions can take place in the long-time limit, we proceed to construct
a simple reduced system as a special example in the next section.

3. Quadruple wave-balanced flow interactions in a periodic domain

Our primary goal in this section is to construct a simple example for waves
influencing balanced modes in the long-time limit in a doubly periodic domain.
Rather than continuing the general analysis in the previous section, we focus on
constructing a set of amplitude equations that capture slow—fast interactions using
resonant wave interaction theory (Phillips 1960; Benney 1962; Craik 1985). From
among the different kinds of wave-balanced flow interactions contained in (2.23), we
ignore triad interactions and focus on quadruple wave-balanced mode interactions.
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Due to prevalent triad interactions of the form GGG (leading to the QG equation)
and WGW (resulting in scattering of waves by G modes), quadruple fast—slow
interactions have received very little attention in RSW. This also acts as a strong
motive to construct a simple set of amplitude equations that capture waves influencing
balanced flow.

3.1. A reduced system consisting of two waves and two geostrophic modes

To construct the minimal system, we consider two balanced modes and two wave
modes of the form

(vg, hg) = (W9, h") exp{ik®" - x} + (v, h%%) exp{ik®* - x} + c.c., 3.1a)
(ww, hy) = @Y, B exp{i "' - x — w1)} + "2, BY?) exp{i(kW2 x4+ wt)}+cc.,

(3.1b)
such that k"' = k"2 | =k, w=+/1+k, Kk?2=k +k"" +E"
and c.c. refers to complex conjugate. (3.1¢)

The above system is the minimal set of modes that can be used to derive a quadruple
wave-balanced flow system in which triad interactions are absent. This is so because
for a single wave mode, all the wave—wave terms affecting the balanced flow exactly
cancel. For example, for the above two wave modes, (3.10), from (2.14b) we obtain

qlw — —{(kW2 . le)(kWI +kW2) . vWZ
+ & ") E K 0" explitk"! + k™) - x} 4 coc. (3.2)

Modes in (3.1b) become a single wave if we set k"> = —k"' and (v"2, h"?) =
(""", K"?"). For this special case of a single wave, g,,, =0, as may be inferred from
(3.2). Similarly, one can show that all wave—wave interaction terms in (2.23) cancel
out for the special case of a single wave.

If we imagine a hypothetical situation consisting of only two geostrophic modes, as
in (3.1), there are no triad interactions. For such a special setting, we may ignore the
term V - (¢ovs) and redefine the relevant slow time as 7 = €T =€°t. To see the effect
of waves on the balanced flow, we also temporarily ignore the interactions between
geostrophic modes to rewrite (2.22) in the form

940

Py +V - {qyve + qoViw + ¢\ yow} =0. (3.3)

It should be noted that only the time derivative of leading PV appears above since
terms such as 9q,,, /90T = €dq,, /0t are O(€?) in (2.22). Substituting (3.1) in (3.3),
we obtain slow equations for the two geostrophic modes k“' and k“* as

qul ) . .
dt + [kGl . (le +kW )J_](_UWI . vWZ )qGZ
_ i(kGl . vGZ)(le +kW2) . [(kW2 . le*)vWZ* + (kW1 . vWZ*)vWI*]
G2
_ IL{(sz . le*)(kGl . vWZ*) _ (kG2 . vWZ*)(kGl . le*)} — 0, (34@)
w
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qu2
i _ [kG2 . (kWI +kW2)L](vW1 . vWZ)qu
_ i(kGZ . le)(le +kW2) . [(kW2 . le)vWZ 4 (kWI . vWZ)le]
Gl
_ i%{(kcz VDK ") — (kO ") kC . vV} =0, (3.4b)

The energy equation for the two geostrophic modes considered is

dEg

d
— = —[A+ KPR + (1 + KPR
dr dr

— i{lkG2|2 _ |kGl|2} {l[kGl . (le +kW2)J_](vW1 . vWZ)
1 *
4 *{(sz . vWZ)(kGl . le) _ (kG2 . le)(kGI . vWZ)}} hGth2 +c.c. (35)
w

Hence, all geostrophic modes that satisfy [k°'|> # |k?|> are potentially capable
of exchanging energy with the waves via four-wave resonance (see figure 1). For
example, consider the special case K" =k"? =k, k°' =k* and k°*> =k* + 2k, where
k* =% x k. For this system, (3.5) becomes

G _ e oo 4 e, (3.6)
dr
However, such an example is highly artificial and difficult to realize in practice, since
an arbitrary set of two geostrophic modes will excite new geostrophic modes by triad
interactions and transfer energy to those modes for time scales T~ O(1). As a result, a
simple set of four amplitude equations that demonstrate energetic interaction between
waves and geostrophic modes does not seem plausible.

3.2. A special set of geostrophic modes

A special set of geostrophic modes that deserve attention are modes that satisfy
Ik°'|2 = |kP*|2. These geostrophic modes are special since in the absence of other
modes they do not excite new geostrophic modes by triad interaction due to the
fact that vg - Vgo = 0 for this set of modes (see appendix D for the proof). Thus,
if we consider a system consisting of two such geostrophic modes and two wave
modes of the same frequency (such that triad wave—geostrophic—wave interactions are
absent), the leading nonlinear interactions would be quadruple interactions. The wave
modes are expected to catalyse energy exchange between geostrophic modes in such
a system. Of course, as follows from (3.5), these geostrophic modes will preserve
their total energy.

We derive an example to demonstrate this mechanism by considering two waves
(W1 and W2) and two geostrophic modes (Gl and G2). The waves are chosen
from opposite branches but have the same wavenumber, k"' = k"? = k. The
geostrophic modes have wavenumbers k' = 2k* + k and k°* = 2k* — k. Such a
set of wavenumbers with k as the only free parameter is a conscious choice to
simplify the algebraic calculations involved in constructing the reduced system. For
this special choice of two waves and two geostrophic modes there are no triad
interactions. Since four-wave resonant interactions are expected to appear due to
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cubic nonlinearity at O(e¢?) in the asymptotic expansions, the slow time is chosen to
be 7 = €%t. The slowly evolving amplitude equations for these four modes are given
by (details of the derivation are given in appendix E)

dg:’l +icggwhc1hoz*hwz* T ilew B + cg1|h01|2 + cg2|h62|2)hw1 0. (3.7a)
dZiVZ B icggWhGIth*hwl* — (el h"2 1 + el + ol KPR =0, (3.7b)
thl
= + Congh® RV Y2 4 ¢ |[BP PR =0, (3.76)
dh .
S Comgh® BV VY — ¢y | PR = 0, (3.7d)

The constants above are given by

Coow = 420K + 2K = 3) /30, ¢y = 300K,
Cor = o = (312k* + 128K — 152)k%/420°, (3.8)
Come =42 = D2/ (1 +5K2), o = —24K*.

We then have the following energy equations from (3.7):

dEW! _ 2ia)2cggw OV ROV W2 e — _dEW2
dr k2 dr
20? 2w?
= Ey=E" 4+ E" = ?|hW1|2+ ?|hwz|2=EW(0), (3.9
dES! dES

— _(1 +5k2)(waghGl*hGZhWIhWZ +ng|hGI|2|hG2|2 +C.C.) - _

dr dr

= Eg=E%"+E®=(1+5)h""]> + (1 + 5k)|h?|* =Eg(0).  (3.10)
System (3.7) also conserves potential enstrophy,
0(1) = Q% + 0% = (1 + 5K |h°' | + (1 4- 5K%)*|h%2|* = Q(0). (3.11)

The main point we wish to make with the help of (3.7) is that the energetic
interaction between balanced modes is affected by the presence of waves, although
(3.7) conserves the total wave energy and total geostrophic energy separately. For an
illustration of this, (3.7) is solved numerically using RK-4 for the initial conditions
MW'=1,h"? =2, h%" =3, h%> =4 and |k| =1/4. Figure 2 shows the energy exchange
between the geostrophic modes in the absence of waves, i.e. obtained by solving
(3.7¢,d) after setting c,,,, =0. It is seen that the G1 mode extracts all of the energy
from G2, asymptotically gaining all of the energy in the system, while G2 asymptotes
towards zero energy, leading to its demise. Figure 3 shows the effect of having waves
in the system obtained by solving the complete system (3.7). In this case, the waves
continuously transfer energy between the geostrophic modes in such a way that the
G2 mode does not lose all of its energy to the Gl mode. As a minor point, we
also observe that the geostrophic modes catalyse energy exchanges between the wave
modes, as is shown in figure 4. (In the absence of the geostrophic modes, the waves
do not interact, as may be inferred from (3.7a) and (3.7h).)
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FIGURE 1. (a) The general case of quadruple interactions between waves and geostrophic
modes in the absence of resonant triads. Two waves (W1 and W2) of the same frequency
(k"2 = |k"*?) can interact with two geostrophic modes (G1 and G2). The interaction
can result in energy exchange between the waves and the geostrophic modes when |k |? #
k2. (b) A special case when [k°'|> = |k°*|>. Geostrophic modes that fall into this
category do not interact among themselves via triad interactions. In such a setting, the
waves can catalyse energy exchange between the geostrophic modes, and the geostrophic
modes can catalyse energy exchange between the waves. More specifically, the energetic
interaction between geostrophic modes is modified by the presence of waves. However,
there is no net transfer of energy between geostrophic modes and waves, i.e. the total
geostrophic and total wave energies remain separately conserved.

4. Summary

This paper was aimed at investigating the evolution of unbalanced initial data in
RSW in the regime Ro ~ Fr « 1, with the main focus on interactions between slow
balanced flow and fast waves. Using the method of multiple time scale asymptotic
analysis, we derived an evolution equation for the slow dynamics of RSW valid
for t < 1/Ro* the well known classical QG equation being valid for ¢ < 1/Ro.
Inertio-gravity waves were seen to influence the balanced flow, while spatially
homogeneous inertial oscillations did not affect the geostrophic field up to O(Ro?).
In the case of an unbounded domain with compact support for initial data, the
wave-balanced flow interaction terms were seen to identically vanish due to fast
decay of the wave amplitudes via dispersive propagation, in complete agreement
with the results of RZB. In such a set-up, the process of geostrophic adjustment
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FIGURE 2. Energy of the geostrophic modes (scaled by 1 + 5k*) in the absence of
wave modes. Thick and thin lines correspond to |h'|? and |h%?|? respectively. The total
geostrophic energy (scaled by the initial value) is conserved, as indicated by the straight
line.
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FIGURE 3. Energy of the geostrophic modes (scaled by 1 + 5k?) in the presence of
wave modes. Thick and thin lines correspond to |h°!|*> and |h®?|? respectively. The total
geostrophic energy (scaled by the initial value) is conserved, as indicated by the straight
line.

takes place and the slow balanced flow evolves unaffected by the fast modes, i.e
quasi-geostrophy still holds, although the new governing equation is a higher-order
balance equation (or an improved QG PV equation) with additional cubic nonlinear
geostrophic interaction terms. However, in the case of a general domain that prevents
dispersive propagation of waves and in the absence of dissipation (this may be real
physical dissipation or artificial/numerical dissipation), the waves can influence the
balanced flow. Furthermore, the energy equation corresponding to the slow evolution
equation is not closed, implying that the slow dynamics can interact energetically
with the fast modes. Thus, in the long-time limit, a splitting between fast and slow
energy does not hold. Ertel potential enstrophy was shown to be an exact invariant of
the higher-order slow evolution equation, although it contains contributions from the
balanced part and the fast dynamics. Thus, fast-slow enstrophy exchanges are also
possible in the long-time limit.

Hence, in the long-time limit, ¢ > 1/Ro, it is clear that an adjustment process
leading to the slow evolution of the balanced flow uninfluenced by the fast fields
is not possible and the QG framework of describing the evolution of balanced flow
without information on wave dynamics breaks down. As a result, if the initial data


https://doi.org/10.1017/jfm.2015.706
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

Downloaded from https://www.cambridge.org/core. The University of North Carolina Chapel Hill Libraries, on 03 Feb 2020 at 16:32:11, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/jfm.2015.706

510 J. Thomas

Wave energy

0 5 10 15 20

FIGURE 4. Energy of the wave modes (scaled by 2w?/k?) in the presence of geostrophic
modes. Thick and thin lines correspond to |A"!|? and |A"?|? respectively. The total wave
energy (scaled by the initial value) is conserved, as indicated by the straight line.

are unbalanced, a slow manifold cannot exist in the long-time limit. Therefore, the
central result of this work is that the slow dynamics obtained by filtering fast waves
can deviate significantly from the slow dynamics obtained by tracking both fast and
slow modes of the full parent model, which in this case is RSW. It is possible that
the presence of wave activity influencing the geostrophic cascade as observed by
Farge & Sadourny (1989) could be an indication of the early stages of interaction
between the waves and the balanced flow. Significant interactions might occur if the
dynamics were investigated for longer times with near-inviscid conditions, i.e. in a
setting such that numerical dissipation does not considerably affect the dynamics for
time scales of the order t~ 1/Ro?.

The interaction was further investigated in a periodic domain with the goal
of constructing a reduced system of slowly evolving amplitude equations. In the
long-time limit, ¢ ~ 1/Ro?, significant four-wave resonant interactions are expected
to take place. In a system consisting of four modes (chosen such that there are no
resonant triads in the system), two waves of the same frequency and two arbitrary
geostrophic modes, the total geostrophic energy is not conserved but is exchanged
with the fast waves. However, two arbitrary geostrophic modes in general do not form
a closed system and can resonantly excite new geostrophic modes by triad interaction.
A special case of non-resonant geostrophic modes, i.e. modes that do not excite new
geostrophic modes via triad interactions, was chosen to derive the reduced system.
Although the total geostrophic energy is conserved in such a system, the presence
of waves modifies the energy exchange between the geostrophic modes. That is, the
energetic interaction between balanced modes can be very greatly modified in the
presence of waves, as was illustrated with a particular example. The geostrophic
modes also act as catalysts for energetic interaction between the waves, although the
total wave energy is also separately conserved in this reduced system. However, this
reduced system only serves as a special example to illustrate that significant fast—slow
interactions are possible in the long-time limit. High-accuracy numerical solutions
of RSW will have to be undertaken to investigate the long-time state of unbalanced
initial data.
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Appendix A. Equivalence of two methods of multi-time-scale asymptotic analysis

Here, we show that the asymptotic technique that we used to derive the higher-order
slow evolution equation of RSW using a single slow time scale, following Ablowitz
(2011), is equivalent to a method that uses two slow time scales. Consider a weakly
nonlinear system of the form

% + Lu+ e Bu, u)+ N (u) =0, (AD

where u € R, .Z is a linear self-adjoint operator, ZA(u, u) is a bilinear operator
and .4 (u) is an arbitrary nonlinear operator acting on u — these operators may be
algebraic or differential (although here we restrict ourselves to the case of u being a
scalar field, all of these ideas may be easily extended to higher dimensions).

Two slow time scales
We introduce two slow times T = et and 7 = €%t to rewrite (A 1) as

d d a
—u+e—u+62—u+$u+e<@(u, u) + €* N (u) =0. (A2)
ot aT at

Using an asymptotic expansion of the form u =u + €u; + €*u + - - - , we write the

leading-order solution of (A 2) as up=e 2'U(T, t), where e *" is the linear solution

in abstract form, with . being an algebraic or differential operator and U(T, t) being
the slowly evolving amplitude. At O(e) we obtain

0 0
$+$u1=—{£ﬁ)+«%’(uoauo)}- (A3)

We use the solvability condition to suppress secular growth of u; and obtain the slow
evolution equation valid for T~ 1 (t~ 1/¢),

U
o + Z{ B (uy, ug)} =0, (A4
oT
where Z () is the projection of v on the linear solution e™", i.e.
1 T
Z{Y(x,t, T)} = lim T/ eZ"y(x, 1, T)dt. (AS)
T—o00 0
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By deriving (A4), we have filtered the fast-time (# ~ 1) dynamics from the leading-
order solution, a process that is accompanied by several advantages. For example,
numerical solution of (A4) can use larger time steps than those allowed by (A 1).
After removing the resonant terms, we can solve (A 3) to obtain u;. At O(e?) of (A2),
we obtain

9 du 9
N | Py = —{”1 + 2% 4 Bluo. uy) + By, ug) +</V(u0)} , (A6)
at aT ot

where % (uy, uy) + B (uy, uy) represent the terms that arise due to interactions between
up and u; in abstract form. We use the solvability condition again to eliminate ¢
dependence and obtain the second slow equation valid up to T ~1 (t~1/€?),

U 0
8‘c+<@{ab; + B(uy, u1)+%(u1,uo)+ﬂ(uo)}=0. (A7)

Equation (A7) has variables that evolve on two time scales — T and 7. The T
dependence appears above since (1) u; obtained by solving (A3) (after removing
resonant terms) depends on ug; (2) nonlinear interactions, % (uq, u;), % (u;, uy) and
N(up), have T dependence, u, depending on T as given by (A4). Equation (A7) is
thus coupled to (A4). In general, writing an evolution equation for the leading-order
field valid for t ~ 1, with the first slow time dependence removed, is a formidable
task. Most of the difficulty arises because (A 4) is in general nonlinear and hence
difficult to treat exactly. In short, constructing a solvability condition based on (A 4)
and using it in (A7) to filter off T dependence, along the same lines that we adopted
in passing from (A3) to (A4), is often difficult, except for some special solvable
forms of (A 4). In hindsight this is hardly surprising, since we were able to introduce
the solvability condition in (A 3) simply because the leading-order equation was linear,
due to which we wrote down an exact solution to it. Once we encounter a nonlinear
equation at higher order in asymptotics, such as (A 4), except for special cases, exact
treatment is not easy.

A pragmatic strategy that bypasses all of these difficulties is to combine the two
slow equations and write a single equation that holds for 7~ 1 to T ~ 1/€. This is
done by summing (A4) + € (A7) and defining 0/0T + €9/t — 9/9T, which gives
a slow equation

U 0
57+ R B, 1)) + R {a’;i + Bug, ur) + B, ug) + aV(u())} =0, (AS)

which is valid for T~ 1/€ or t~ 1/€*. At this point, one must realize that we have
given up the idea of distinguishing between two slow time scales, T and 7. Instead,
a single slow time 7 is allowed to vary from O(1) to O(1/¢) in (A 8). However, it
must be noted that in spite of (A 8) containing €, one is at a higher advantage solving
(A 8) than solving (A1) (up to ¢t~ 1/€?), which has fast dynamics ¢~ 1 and hence
requires very small time steps. Although the impact of the higher-order terms, i.e.
terms multiplied by €, is weak for T ~ O(1) time scales, these terms may change
the leading-order field by a significant amount in longer time scales, T ~ 1/e.

A single slow time scale
We now show that one may obtain (A 8) by using a single slow time, i.e. without
explicitly introducing two slow time scales, but by modifying the analysis slightly. We
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introduce a single slow time T =€t and rewrite (A 2) as

%H%Jr.zﬁe@(u, u) + €N (u) =0. (A9)

At O(e) we rewrite (A4) as

% + B{B(uy, up)} = €@ (x, T) + O(e?), (A 10)

where @ is a higher-order correction term and will be obtained at the next order. We
also retain O(e?) on the right-hand side of the above equation to indicate the order
of error terms involved and hence to imply that (A 10) is valid for 7 < 1/e but not
for T>> 1/e. At O(€®) of asymptotics we obtain

9 9
% + PLup = —{ab; +e LD x, T) 4+ Bug, uy) + By, ug) +,/V(u0)} . (A1D

Suppressing secular growth, we obtain

0
Qx,T)+ X% {EE)L; + B(ug, uy) + By, up) + JV(uO)} =0. (A12)

We combine (A 10) and (A 12) to obtain

% + Buo, w) + By, uo) + JV(MO)} + 0(e*) =0.

(A13)
Equation (A 13) is the slow equation valid for ¢~ 1/€2, since we eliminated secular
growth up to O(e?). It should be noted that this is the same equation we obtained
using two time scale asymptotics (A 8). Alternatively, if we redefine the time
derivative in (A 13) as 9/dT — 9/dT 4+ €d/dt and write the corresponding equations
at O(1) and O(e), we obtain (A4) and (A7). One may use (A 10) to modify the
part of (A 13) multiplied by €. The error involved in the process is O(e?) and is
insignificant for 7 < 1/€. This technique of using a single slow time and eliminating
resonance up to O(e?) to derive a slow equation for RSW valid up to t ~ 1/€2
was adopted in this paper. The reader may refer to Ablowitz (2011) for particular
examples that take advantage of this method.

U
3T + BB (uy, uy)} + €% {

Appendix B. Higher-order balance equation

Here, we show that the higher-order balance equation we derived in the absence of
waves, (2.24), is equivalent to the improved QG PV equation of RZB.

We ignore waves (i.e. set vy = hy =0) and use Z X {GVs + V(Ué/2) =v5-Vvg in
(2.12a) to obtain an alternate form of (2.13c¢),

ohg . -
mz—Va—TG +2x Vi — (v - V)(Vhg) (B la)
= §6=2-(V x015) —h = (A — Dh — 23[hg,, hg,], (B 1b)
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where (B 1) is equivalent to (2.14¢) and 9[f, gl =f.g, — fy&:. Now,

_ dhg  _
V- (qvig) = _qoaiT'Fle'qu

(using a modified form of (2.13d), V - v,5 = —0dhs/0T)
0 aqgo . - d
= - — Vh)-Vgy—Vqy+ —(V
8T(qth) + he o + (@& xVh) Vg 90 aT( he)
—Vgo-{(vg-V)Vhg} (using (Bla))

0 . — 0
= —87(40hc) —hgV - (qovg) + @ x Vh) - Vgo — 87{VQO - Vhg}

+ {th . %VQO —Vgo - {(vg - V)Vha}} + O(e)
(using (2.17))
= —%(Clohc +Vqo+ Vhg) =V « (heqove) + € x Vi) - Vo
—[Vhg - V(vs+ Vo) + Vg {(ve - V)Vhg}] + O(e)
(using (2.17) again). B2)
After some manipulations, one can show that

Vi V(v Vao) = Vhg+ (06 V)Vao + {2 x V (4(Vhe)) } - Vo (B3)

Substituting (B 3) in (B2) gives

_ 0 _
V. (qovig) = _ﬁ(QOhG +Vqo-Vhg) =V« (hgqove) + d[hy, qol

1
— (g V)(Vqo - Vhg) =9 [Z(th)z, q()] + O(e). (B4)

Substituting (B 1) and (B4) in (2.24) and rearranging gives

0 — 1
a—g +0 [{(hc+€h1) —62(th;)2} ; Q} +0(*) =0,

where Q = (A — 1)(1’1{; + EE]) — 268[th, hGy] — Equ’lG — EVqO . VhG (B 5)

One may further combine the slow height fields as i = hg + €h, to rewrite the above
equation as

90 S .
8T+8[{h—62(Vh)},Q}#—O(e)_o,

where Q= (A — 1)l — 2€d[h,, hy] — eh(A — Dh — eVh - V{(A — 1)} + O(€?). (B 6)

The error involved in the operation is O(e?), which is insignificant for time scales
T < O(1/€). The above equation is the improved QG PV equation (3.72) of RZB,
which was also derived by Allen (1993) and Warn et al. (1995).
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Appendix C. Derivation of the slow energy equation

Here, we describe the steps leading to the slow energy equation, (2.35). We spatially
average (2.34) to obtain

aq
<hc+€ {hG(CI1G+¢I1W)}>

T oT
_ 0hg ohg -
—€( G +9Vhe - Vig+G 1y~ +qVhs - Viy+ (Vhg - vw)q)y
oT oT
+0(e*) =0. (C1)

8q0 0 0 vé h2G hG
h hg—(Ahg —hg) = —— ( S + =5 ) + V. (heV
aT oo (At —he) 8T<2+2 + “7 9
dq0 ] vZ  hi
homm y=—— ([ S 4+26) ). C2
:><08T> 8T<<2+2 €2

We use (2.14) to obtain

heq,g = Z+(hgV xv5) — hehy =2+ V x (hgv1g) — 2+ (Vhg X V1g) — hghy
= 2+ V x (he¥16) — (vg * Vig + hh)
= (heq,g) = — (v * V16 + hoh) (C3)
and
heGyy = 2+ (hV x V1) =2V x (hgO1y) — 2+ (Vhg X U1yy)

= 2:V x (hgUiy) — V5 - Viy
= (heqy) = —(vG  Viy). (C4)

Equation (2.14¢) is used for

ahgi 8hG — ahg— 8hG sz ahG
Moz = D6 4 Qeg L I6 4\ (Vo) Moy oy
or 1o = At T gt ar e, or ¥ Ve

— ohg - ok oh Y 2\ o
= a2l %6y (Dogy _pv PG 4 (Yo) 4%
oT T aT aT 2 ) 2%t

o 2)- () )
oT 2 2 oT
hG 0 Vs
-V. <§08TV}10> + 5687 <2>
ohe _ _ 8@0 i %
= <8T6116> = <h oT T aT <§G ) )> (C5)
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and (2.13¢) is used to obtain
g —
Vhc 0 = — L2y G
qoVYhg:Vig qoV: {8T+ <1—|—2>}

0 2 - v2 . v2
= g ( G) -V. {Clovc (hl + ZG) } + (hl + 2(;) V - (qove)

Bl v Rl _ 2
= Tar (q° 2G> h‘aiT0 -V {qo"G (h‘ + 2G> } +0(©

(using (2.17))

0 aqo
= (qoVhs Vi) =— <8T < v;) +hlaT> + O(e). (C6)

We use (2.14b) for

dhe dhg (k)  dhorr o (Vi o
Nog = L6 _Dega 5 (wh oG
oT v T T (2 WX W

N A Ahg+V - s g viv | _ (v y e —LhG%
2 )T aT 2 2 aT 9T
9
X —_—
P)
dhe v}, )\ 0 dvg —
w256 I Cc7
:><8T611w> <<2>8T+8T wOw (C7)

and (2.13b) to obtain

N v,
Vhe - qoviw = —qoVheg - hwvw — qovg -V <2W>
% %
= —qoVhg - hyvw + 2 V - (qove) — 610”(;7
_ aqo [ vk
= (Vhg - qoviw) = qoVhe + hyvy + 87 B3 + 0(e), (CB)
where we used (2.17). Finally, we use (2.16b) to obtain
- t
(Vhg - vw)qiw = qoVhg « (hwow) — (Vhg - vw) Vo - / vy dr. (C9)

Substituting (C2)—(C9) in (C1) and simplifying gives the energy equation (2.35).

Appendix D. Non-resonant geostrophic modes in the periodic domain

Here, we prove that geostrophic modes having the same wavenumber vector
magnitude do not excite new modes via triad interaction since vg - Vg=0 for these
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modes. We note that for a particular mode,

g=(A—Dhe= q=—(1+ k], (D1)
Vo =2 x Vhg = v, =ilk™. (D2)

Consider two geostrophic modes, (vg, q) = (v, q1)e¥"™* + (vy, ¢2)e"** + c.c. Then,

Vg - Vq
=i{(k; - v2)q1 + (ky - V1) @} ® T L[k, - v))g — (ky - v) g5} TT 4 cc.
= —{(k:1* — ko)) (k) + by ) Iy hpe®1 TR — py pzeli—kry 4 e (D3)

where we used (D2). Thus, there will be no triad interactions, and vg - Vg =0 if
k1> = lka|*  or ky = cks, (D4)

where ¢ is an arbitrary constant.

Appendix E. Derivation of the amplitude equations for quadruple wave-balanced
mode interactions

We derive amplitude equations for a system consisting of two geostrophic and two
wave modes. Since we will not encounter triad interactions for this reduced system,
we let the slow time be T =€t and rewrite (2.2) as

v 9
a—+z><v—|—Vh+ev Vv+ea—v 0, (E 1a)
T
h Loh
—+V.v4+eV.(hw)+e— =0, (E1b)
dt T
dq 9
Y4 ev.(qu+e2d . (Elc)
ot 0T

O(1) equations
Equations (2.5) form the O(1) equations. We write the solution of this system as
(v, ho) = (©°', ") expli(2k* + k) - x} + (v, h®?) exp{i(2k* — k) - x)}
+ ", B explitk - x — wt)} + 0", BY?) explitk - x + wt)} +c.c. (E2)

O(€) equations
The equations at this order are

9
%+zx v+ Vh =—vy- Vo, (E3a)
3h
a—;+v v, =—V - (hovp), (E 3b)
3
% =~V - (gov0). (E3c)

These are the same linear equations as (2.5), but now forced by geostrophic—
geostrophic, wave—geostrophic and wave—wave interaction terms on the right-hand
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side. There are no resonant triads and hence the particular solution of (E 3) is obtained
after some lengthy but straightforward calculations as

v, = {(4iw — 3 — (19 + 12iw)k>)k + Biw + 4 + (20 + 23iw)kH)k*)
Gl W1

X o exp{i((2k +2k*) -+ x — w1)}
G2, W1

h
+{(@diw+1— 15k + (4 —iw+ (4 + 3iw)k2)kl}W exp{iRk* - x — wt))
(0)

+{(1 — 4iw — 15Kk + (— (4 + iw) + Biw — HKHk™)

hGl*hWI
3wk?

+ {(—diw + 3) + (12iw — 19E*)k + (3iw — 4 + (23iw — 20)k>)k*)

G2* 1, W1
Twk?

+ {(4iw + 3 — (12iw — 19)k>)k + (iw — 4 + (23iw — 20)k>)k*)

G113, W2
Twk?

+ {(diw — 1 + 15Kk + (— (4 + iw) + Giw — HEHk™)

G21,W2
3wk?

+{(=(1 + 4iw) + 15Kk + (4 — iw + Giw + HEHk™)

hGl*hWZ
3wk?

+{(3 — 4iw + (12iw + 19)k)k + Biw + 4 + (23iw + 20)k>)k™)

G2* hW2

S — 1 J— J_ .
X =T exp{i((2k — 2k™) - x + wt)}

+ 16ik°khO ¢ exp{i2k - x} — 8ik2khC ' h®? exp{idk™ - x}

expl{i(—2k™ - x — wi)}

expl{i((2k — 2k™) - x — wi)}

X expl{i((2k + 2k*) - x + wt)}

X exp{i2k* - x + w1)}

expli(—2k" - x + wn))

h2
+{(1 + 2k*)wk — iw*k™* }klz1 exp{i(2k - x — 2wt)}

h2
—{(1 4+ 2K*)wk + iwzki}kl; exp{i(2k - x + 2wt)}

2iw? ) 2w
— ?kih‘mhw2 exp{i2k - x} +c.c. + ﬁk(|hwz|2 — A", (E4)

Glp,W1

h = 8Qw +ik?) exp{i((2k + 2k*) - x — o)} + 8(w — 1)

G2hW1
X exp{iRk* - x — wr)}
3w
GI1* L, W1
+8(w +1) o exp{i(—2k* - x — i)} + 8w — ik?)
G2* W1
X exp{i((2k — 2k*) - x — w1)}

Tw
hGthZ
+8Qw — ik2)77 exp{i((2k +2k*) - x + wi)} + 8(w + i)
w
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hGZ hW2
exp{i(2k™ - x + wi))

G1* W2

3w

X

3w

+ 8(w —1)

G2* W2

exp{i(—2k™ - x + wt)} + 8w + ik?)

X

exp{i((2k — 2k*) - x + w1)}
+2w?h3,, expli(2k - x — 2w1)} + 2wh;, exp{i(2k - x + 20t)} +c.c.  (ES)

The homogeneous solution of (E3) can be absorbed in (E2). Thus, the homogeneous
solution up to O(e) can be written as (1 + €)vg, (1 + €)hy, which is the standard
procedure (see, e.g., Ablowitz 2011). We then proceed to O(e?), where the above
solutions interact with O(1) solutions to induce four-wave resonance.

O(€?) equations
Since equations at this order are cumbersome, we write the forcing terms in abstract
form as

% +2x vy 4 Vip=F" explitk - x — wn)} 4+ F"? exp{i(k - x + w1))

+ F9 expli(2k* +K) - x} + F? expli(2k* — k) - x} + NR, E 60
aaitz YV v, = FY explitk - x — wn)} + FY? explitk - x + 1)

+ FO expli(2k* +k) - x} + FO expli(2k* — k) - x} + NR, E6b)
% = F{' expli2k" + k) - x} + F? expli(2k* — k) - x} + NR, (E6e)

where NR above refers to non-resonant terms. Setting the resonant forcing terms
of (E6c) to zero gives slowly evolving amplitude equations for the geostrophic
modes. Alternatively, substituting (E2) in (2.22), ignoring resonant triads and further
simplifications lead us to the same equations for the geostrophic modes. To obtain
amplitude equations for the waves, we rewrite (E 6a) and (E 6b) in the form

] g N
(aﬂ +1-— A> v, = F" explitk - x — ot)} + F)"* expli(k - x + wf)} + NR, (E7)

9 g .
(aﬂ +1-— A> hy =F)" explitk -x — wt)} + F}"* expli(k - x + ot)} + NR. (E8)

Setting the resonant terms on the right-hand side to zero gives the amplitude equations
for the waves. Thus, we obtain the system of four slowly evolving amplitude
equations, (3.7).
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