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Oceanic flows are turbulent and multi-scale in
nature, and are composed of fast internal waves
and slowly evolving balanced eddies. Contrary to
conventional wisdom in physical oceanography,
the past two decades of in situ, satellite altimeter
and realistically forced global scale ocean model
outputs have revealed that internal gravity waves
can have comparable or higher energy levels than
geostrophically balanced flows at 10–100 km scales
in different parts of the world’s oceans. These
relatively recent findings have fuelled a wide range
of research activities aimed at understanding how
fast internal gravity waves interact with slowly
evolving balanced flows, particularly with the goal
of deducing whether internal waves can form an
energy sink for oceanic balanced flows. In this paper,
we comprehensively review theoretical, numerical
and observational investigations undertaken to study
internal wave-balance flow exchanges. Theoretical
calculations, inspired by different wave-balance
regimes seen in observational and global ocean model
outputs, are used to point out that internal waves
can affect balanced flow dynamics. The theoretical
results are followed up by a detailed discussion of
numerical results on wave-balance interactions in
a broad set of parameter regimes. The numerical
results reveal how different kinds of waves exchange
energy with balance flow, affect energy flux across
scales of balanced flow and facilitate the generation
of small-scale dissipative balanced flow structures.
The numerical simulation results and global internal
wave energy and balanced energy maps are used
to conjecture that out of the 0.8 TW of power
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going to balanced flow kinetic energy in the ocean, at least 0.1 TW could be dissipated by
internal gravity waves. We therefore hypothesize that internal waves can form a non-negligible
energy sink for balanced flow in the world’s oceans.

1. Introduction
Oceanic mesoscale flow, with O(100) km scales, is constrained by Earth’s rotation and density
stratification and is the largest reservoir for total oceanic flow kinetic energy [1–3]. The mesoscale
flow is an intertwined mixture of fast evolving internal gravity waves, whose time scales range
from a few minutes to a day, and a slowly evolving balanced component, whose time scales range
from weeks to months. Furthermore, the mesoscale flow is characterized by asymptotically small
Rossby number, this dimensionless number being the ratio of inertial force to Coriolis force in
the flow. The smallness of the Rossby number at mesoscales makes it possible to decompose the
flow into fast internal gravity waves and the slow balanced component. Internal gravity waves
are dispersive in nature and are primarily generated by atmospheric winds and gravitational
tides [4,5]. On the other hand, the balanced flow, named so because it is in geostrophic balance
(lateral pressure gradient balances the Coriolis force) and hydrostatic balance (vertical pressure
gradient balances buoyancy force arising due to vertical density stratification), is primarily
generated by atmospheric forcing [6,7].

The slow balanced flow component organizes itself into O(100) km coherent vortices known
as mesoscale eddies. These coherent eddies contain close to 90% of the mesoscale kinetic energy
and act as agents that transport mass and tracers across the oceans [3,8,9]. Since internal waves
evolve, propagate and dissipate on a much shorter time scale than the slowly evolving balanced
flow, it would seem reasonable to track the balanced component of the flow and ignore fast
internal gravity waves for predicting slow long-term dynamics of the flow. Such an attempt
results in a single equation model for the balanced component that is devoid of fast waves: the
quasi-geostrophic (QG) equation.

Historically, the need for a reduced mathematical model that can track the evolution
of the balanced component of geophysical flows was recognized more than a century back.
L. F. Richardson made the first and original attempt at weather prediction by numerically
integrating the full equations of motion [10,11]. Unfortunately, his numerical integration used
unbalanced initial conditions and time steps larger than that allowed by the numerical stability
criterion, resulting in the time integration diverging with non-physical solutions. Realizing the
need to filter waves and track the slow balanced dynamics resulted in the derivation of the
QG equation [12,13], which was used for the first set of successful computer weather forecasts
[14,15]. In the early days of weather prediction when computational resources were limited, it
was necessary to filter waves and concentrate on the slow balanced dynamics; specifically since
not having to resolve fast internal waves allowed numerical integrations with larger time steps.
Consequently, even when the full primitive equations were integrated, it was common practice to
carefully initialize numerical integrations so as to minimize the generation of fast waves [16,17].
Such pursuits inspired the introduction of the slow manifold: an invariant manifold in state space
that was devoid of fast wave activity [18,19].

Although one could define a slow manifold for an arbitrary dynamical system without
much difficulty, in practice, it is extremely challenging to obtain solutions of the governing
equations that remain on the slow manifold as time progresses [20–22]. Simply put, this means
that even though the initial conditions can be carefully designed to be in balance, there is no
guarantee that fast waves will remain suppressed as the system evolves. Extensive research in this
direction based on idealized dynamical system models, asymptotic and numerical investigations
of primitive equations, and laboratory experiments have pointed out that, however well-balanced
initial conditions might be, fast internal gravity waves will be spontaneously excited as the flow
evolves [23–27]. Nevertheless, the strength of waves and other unbalanced flow components that
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are excited can be insignificantly small in the small Rossby number regime if the flow is well
balanced initially (see discussions and references in [28]). Therefore, even though a perfect slow
manifold that is completely devoid of fast waves might be unrealistic, a balanced flow in the
small Rossby number regime can evolve in an ‘almost’ balanced state with insignificant fast wave
activity. As a result, balanced models such as the QG equation and its variants can capture the
dynamics of almost the entire flow in the small Rossby number regime, as long as wave energy
levels remain small.

Seventy-five years since the first derivation of QG equation by Charney [12], in situ
measurements, satellite altimeter datasets, and realistically forced global ocean models have
revolutionized the field of physical oceanography [29–34]. One of the key features that have
emerged across observations and model outputs is the dominant presence of high energy fast
internal gravity waves at O(10–100) km scales in the world’s oceans. Specifically, oceanic datasets
of the past two decades have revealed that internal waves can have scales comparable with
balanced eddy scales and can be as energetic or sometimes even more energetic than the local
balanced flow [35–45]. The physical oceanographer’s view has therefore changed from thinking
of flows in the ocean as largely composed of large-scale balanced eddies and small-scale internal
gravity waves to one where fast waves and slow balanced eddies coexist in the ocean with
comparable spatial scales and energy levels (see figure 1 and caption there). This updated
view of the ocean that has emerged over the past few decades has challenged the previous
paradigms of QG turbulence dominating throughout the world’s oceans. Given the oceanic
data sets uncovered in recent times, it is imperative to understand how energetic fast internal
gravity waves affect the balanced flow and modify QG turbulence phenomenology for reasons
detailed below.

About 0.8 TW of power is input into the geostrophically balanced flow kinetic energy across
the global oceans [3]. As mentioned earlier, the balanced flow dynamics can be captured by the
QG equation and the QG equation is characterized by an upscale transfer of energy, similar
to the dynamics of the two-dimensional Euler equation. The upscale energy transfer results in
balanced energy accumulating at O(100 km) mesoscales, eight decades away from O(mm) viscous
Kolmogorov scales where flow kinetic energy can get dissipated. Mechanisms that can form an
energy sink for balanced flow are therefore actively sought after, this being a crucial ingredient
for closing the overall oceanic energy budget [47,48]. Dominant mechanisms uncovered so far
involve balanced eddies interacting with different forms of boundaries and boundary layers
[49–56]. Quite naturally, none of these would be operational in the open ocean and interior parts
of the ocean. If internal waves interact with balanced flow and facilitate a forward energy flux
of balanced flow, that would be a mechanism for small-scale viscous dissipation of balanced
flow without involving boundaries. Consequently, wave-induced forward flux and subsequent
dissipation of balanced flow could be an energy sink for balanced flow in oceanic regions away
from boundaries.

In addition to assisting in the forward flux and small-scale dissipation of balanced energy,
internal waves are also often hypothesized to be capable of directly extracting energy from
balanced flow [57,58]. This implies the possibility that waves might extract energy directly from
large-scale balanced flow without necessarily forcing balanced energy to move to small scales.
If this hypothesis is proven to be true, direct extraction of balanced energy would be an energy
source for waves. Although internal waves are excited at large scales of O (100–1000) km by winds
and tides, the forward energy flux and subsequent dissipation of wave energy at small viscous
scales is considered to be the main mechanism for small-scale ocean mixing [59,60]. If waves gain
a significant amount of energy from balanced flow, the extra wave energy gained from balanced
flow would be fluxed to small scales and be dissipated along with the wave fields generated
by winds and tides, leading to an additional energy source for small-scale mixing by wave
breaking. Finally, a deeper understanding of the role waves play in the ocean and specifically
on the balanced flow will generically help in improving large-scale ocean and climate models
that are still far from resolving fast wave fields. Given that there are multiple indications of wave
parametrizations making notable difference in predictions of large climate-scale models [61–65],
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Figure 1. Figure shows fast waves and the slow balanced flow component in oceanic flows in different scenarios. Panel (a)
shows a generic oceanic frequency spectrum from in situmeasurements discussed in [46]. Observe the plateau of energy at low
frequency end on the left,which corresponds to the slowbalancedflow. The right side of the figure shows the near-inertial peak,
M2 tidal peak and a broad spectrum of high-frequency waves identified as the internal wave continuum. Panel (b) shows the
energy spectrum in frequency space based on in situmeasurements detailed in [43]. The black curve is the total energy spectrum
and red curve denotes the vortical or geostrophic energy spectrum, implying thatwaves dominate the flow. Panel (c) is adapted
from [42] with permission, copyright 2018 John Wiley and Sons, and shows the balance to wave energy ratio in the 10–50 km
band based on a realistically forced global scale ocean simulation. Note that in certain oceanic regions wave energy levels can
be up to two orders of magnitude higher than balanced flow and vice versa in some regions. Panel (d) is adapted from [35] with
permission, copyright 2012 JohnWiley and Sons, and shows the sea surface height (SSH) spectrum (black curve) inwavenumber
space obtained from global scale ocean model simulations. The spectrum is decomposed into a high-frequency component
(HF, red curve) and a low-frequency component (LF, blue curve). Note that the low-frequency component dominates at the
largest scales while the high-frequency component starts overtaking the slow component at O(100 km) scales. The scale at
which fast waves starts dominating over the slow balanced component is highly variable in the ocean and is sensitive to the
geographical location and the season of the year.

it is imperative to develop a comprehensive understanding of the different roles played by
internal waves in the ocean so as to improve the predictions of large climate-scale models.

The plan for the paper is as follows: an asymptotic analysis on wave-balance interactions
is discussed in §2, results based on numerical simulations emphasizing wave-balance energy
exchanges is detailed in §3, related findings from oceanic observations are discussed in §4, and
comparisons between interactions in low and O(1) Rossby number flows are given in §5. The
paper then concludes by discussing (a) approximate estimates for global dissipation of balanced
energy due to internal wave induced and other mechanisms and (b) unresolved challenges for
future studies in §6.

2. Asymptotic results on wave-balance interactions
In this section, we will use small Rossby number asymptotic analysis to derive equations that
demonstrate the effect of waves on balanced flow. The leading-order slow evolution equation
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for balanced flow is the QG equation that has been derived in multiple studies in the past
[12,13,66]. A key feature of linear internal gravity waves is that they do not project on the leading-
order part of the potential vorticity field. Consequently, the balanced flow evolves according to
the QG equation unaffected by waves [67–69]. Although the balanced flow evolves unaffected
by waves at leading order, higher-order nonlinear wave interactions can affect balanced flow
evolution. This was pointed out using rotating shallow water equations by Thomas [70]. For
the parameter regime where waves are asymptotically stronger than balanced flow, Wagner &
Young [71] derived an equation for balanced flow that contains wave interaction terms. Below we
combine the asymptotic analysis of [69–71] to derive an evolution equation for the slow balanced
flow that is affected by fast waves.

The f-plane hydrostatically balanced Boussinesq equations in non-dimensional form are

∂v

∂t
+ ẑ × v + ∇p + ε

(
∂v

∂T
+ v · ∇v + w

∂v

∂z

)
= 0, (2.1a)

∂b
∂t

+ N2w + ε

(
∂b
∂T

+ v · ∇b + w
∂b
∂z

)
= 0, (2.1b)

∂p
∂z

= b (2.1c)

and ∇ · v + ∂w
∂z

= 0, (2.1d)

where ε = U/fL is the Rossby number and T = εt is a slow time variable. The above system of
equations conserve potential vorticity (PV) on fluid parcels [7]. Recognizing the fact that PV has
non-zero contributions even in a fluid at rest, Wagner & Young [71] introduced the concept of
Available Potential Vorticity (APV). The APV equation corresponding to (2.1) in non-dimensional
form is

∂Π

∂t
+ ε

(
∂Π

∂T
+ ∂Γ

∂t
+
(

v · ∇ + w
∂

∂z

)
Π

)
+ ε2

(
∂Θ

∂t
+ ∂Γ

∂T
+
(

v · ∇ + w
∂

∂z

)
Γ

)
+ O(ε3) = 0.

(2.2)

We refer the reader to appendix A for details required to arrive at (2.1) and (2.2) along with an
elaborate definition of variables that appear in (2.2).

On expanding all variables asymptotically, for example, writing v = v0 + εv1 + ε2v2 + · · · for
velocity, the O(1) equations we get from (2.1) are linear. We write the solution of the linear
equations as the sum of slow balanced part (denoted by an overbar hereafter) and fast linear
waves (denoted by a prime hereafter). For example, the velocity field is expanded as v0 = v0 + v′

0.
The slow balanced flow and fast waves satisfy the linear equations:

∂v′
0

∂t
+ ẑ × v′

0 + ∇p′
0 = 0 ẑ × v0 + ∇p0 = 0

∂b′
0

∂t
+ N2w′

0 = 0 w0 = 0

∂p′
0

∂z
= b′

0
∂p0
∂z

= b0

∇ · v′
0 + ∂w′

0
∂z

= 0 ∇ · v0 = 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.3)

In using the flow decomposition of the form v0 = v0 + v′
0, we enforce that the leading-order

wave and the balanced flow fields are of the same asymptotic order. We will identify this regime
as the Comparable Wave (CW) regime, meaning that waves are comparable in strength to the
balanced flow. Furthermore, it is worth noting that in the above flow decomposition, the wave
and the balanced flow component have no spatial scale separation, in spite of them having a time
scale separation.
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The leading-order equation from (2.2) is

∂Π0

∂t
= 0 ⇒Π0 =Π0 and Π ′

0 = 0. (2.4)

The leading-order APV, Π0, therefore does not have fast fluctuations and is a purely slow field.
We proceed asymptotically to O(ε) and eliminate secular growth to obtain (see appendix B for
details): (

∂

∂T
+ v0 · ∇

)(
�p0 + ∂

∂z

(
1

N2

∂p0
∂z

))
= 0. (2.5)

The above equation is the well-known QG equation that governs the slow evolution of balanced
flow on T ∼ O(1) time scales. Since v0 and p0 are related through the geostrophic balance
relationship in (2.3), the QG equation above is an evolution equation for a single variable,
making it an attractive reduced equation that has been used to investigate geostrophic turbulence
phenomenology [72–76].

As is clear from the above, the standard QG equation in (2.5) is obtained at O(ε) of the
asymptotic analysis. However, by systematically proceeding to O(ε2) in the asymptotic analysis
we can derive a more accurate model that captures the long-term dynamics of the balanced flow.
This procedure, detailed in appendix C, gives us

∂QCW

∂T
+ ∂[ψCW , QCW] = 0, (2.6a)

QCW = QG0 + εQG1 + εQW , ψCW =ψG0 + εψG1 + εψW , (2.6b)

QG0 =�ψ + ∂

∂z

(
1

N2
∂ψ

∂z

)
, (2.6c)

QG1 = 1
N2

⎛
⎝�ψ ∂2ψ

∂z2 −
(

∇ ∂ψ
∂z

)2

− Λ′′

2N2

(
∂ψ

∂z

)2

− 1
N2

∂ψ

∂z
∂

∂z

(
N2�ψ + ∂

∂z

(
1

N2
∂ψ

∂z

)))

− 2∂

[
∂ψ

∂x
,
∂ψ

∂y

]
− ∇ψ · ∇

(
�ψ + ∂

∂z

(
1

N2
∂ψ

∂z

))
, (2.6d)

QW = 1
2
�pS − ẑ · ∇ × vS + 1

N2

(
ζ ′

0b′
0z + (ẑ × v′

0z) · ∇b′
0 − Λ′′

2N2 b′
0

2
)

(2.6e)

and ψG0 =ψ , ψG1 = −1
2

(∇ψ)2 − 1
2N2

(
∂ψ

∂z

)2

, ψW = pS

2
. (2.6f )

Above, QG0 and ψG0 are the leading-order balanced APV and streamfunction fields, which
are linear in the balanced terms, while QG1 and ψG1 are next-order correction terms that are
composed of quadratic nonlinear balanced–balanced interaction terms. QW and ψW are, on the
other hand, the contributions of quadratic nonlinear wave–wave interaction terms to the APV
and the advecting streamfunction, which are in turn dependent on Stokes velocity vS and Stokes
pressure pS (see appendix B for mathematical expressions of Stokes fields).

In comparison to the leading-order QG equation (2.5), (2.6) is an improved higher-order
accurate evolution equation for the slow balanced flow that holds for longer timescales. Although
many studies have explored improved balanced-model approximations, the higher-order slow
equation (2.6) in the above form with nonlinear balanced interaction terms (terms with subscript
‘G1’) and nonlinear wave interaction terms (terms with subscript ‘W’) has not been reported
elsewhere to the best of the author’s knowledge. Nevertheless, several reductions of (2.6) have
been derived in the past.
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The simplest reduction of (2.6) is obtained by setting ε = 0; this gives us the QG equation
∂QG0/∂T + ∂[ψG0, QG0] = 0 as in (2.5). On the other hand, if we drop all the terms that
contain wave fields (terms with subscript ‘W’) in (2.6), we get a higher order version of the
QG equation: ∂(QG0 + εQG1)/∂T + ∂[(ψG0 + εψG1), (QG0 + εQG1)] = 0. This higher-order improved
balanced equation that is unaffected by fast waves is identical to the improved QG equation
derived by Zeitlin et al. [69] in the geostrophic adjustment setting (see their eqn (3.15)). A similar
attempt to include higher-order balanced correction terms, without including internal waves
was undertaken by Muraki et al. [77], who called their higher-order balanced equation QG+.
A notable result that follows from investigating QG+ equations is that higher-order balanced
correction terms can modify balanced flow dynamics. For instance, Rotunno et al. [78] and
Hakim et al. [79] show that incorporating higher-order balanced contributions can affect baroclinic
instability and can also introduce a cyclone–anticyclone asymmetry in vorticity structures. The
asymmetric dominance of cyclonic vorticity structures is a feature observed in the ocean [80–82]
and is not captured by the leading order QG equation (2.5) which maintains a cyclone–anticyclone
symmetry.

Given that higher-order balanced terms can modify flow features that follow from the QG
equation (2.5), we anticipate that the presence of waves in (2.6) would affect balanced dynamics,
making it difficult to envision a slow manifold unaffected by fast wave fluctuations on long time
scales [18–21]. In other words, for unbalanced initial conditions that can generate fast waves and
slow balanced flow, the slow dynamics will be affected by fast modes and the slow dynamics’
equation cannot be closed by including the slow variables alone.

Note that in the CW regime that we explored so far, where wave and balanced flow have
comparable strength, the effect of waves on the balanced flow is weak since all the wave
interaction terms (i.e. terms with subscript ‘W’) are pre-multiplied by ε in (2.6b). The wave-
induced effects therefore arise as next-order asymptotic correction terms to the QG equation. A
parameter regime that has received interest over the past decade is the strong wave (SW) regime
where waves are stronger than balanced flow. This specific asymptotic regime was studied by
Wagner & Young [71], and the appropriate slow evolution equation in this regime can be derived
as we proceeded earlier, but by enforcing the leading-order fields to be purely waves and balanced
flow to be an asymptotic order weaker than waves. For velocity field for example, the asymptotic
expansion for this regime would be v0 = v′

0 + εv0 + · · · . Since the balanced field is O(ε) in this
regime, the appropriate slow time scale becomes τ = ε2t. Using this and proceeding with the
asymptotic analysis as before gives us the slow evolution equation

∂QSW

∂τ
+ ∂[ψSW, QSW] = 0 (2.7a)

and
QSW = QG0 + QW, ψSW =ψG0 + ψW (2.7b)

The above equation (2.7) was derived by Wagner & Young [71]; see their eqns (4.52), (4.53) and
(4.54). The same equation above was also derived by Salmon [83] using variational methods. As
can be seen above, the SW equation is much simpler and more compact than the CW equation (2.6)
since higher-order balanced flow interactions (terms with subscript G1 in (2.6)) do not appear in
this equation. This SW regime has also received interest in the surface gravity waves community
in connection to Langmuir circulation. Equations similar to the SW equation above were derived
by Craik & Leibovich [84] and Leibovich [85] to examine surface wave-vortical mode interactions.

The other extreme end of wave-balance interactions is the weak wave (WW) regime where
a leading-order balanced flow exists on top of which small amplitude waves are excited. This
regime was popularly studied in the past to examine how a small amplitude wave field could
affect balanced dynamics on an extremely long time scale (e.g. [57,86]). As seen from (2.6), since
all the wave interaction terms are pre-multiplied by ε, the effects of waves on balanced flow are
weak when waves are comparable in strength to balanced flow. The impact of waves on balanced
flow in the WW regime, where the waves are a small perturbation to a leading order balanced
flow, would therefore be much less than in the CW regime.
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We conclude this section by pointing out that the slow balanced flow equations (2.6) and
(2.7) can be derived for other geophysical fluid dynamic models. For instance, similar slow
balanced equations for the rotating shallow water model can be found in ch. 3 of [87]. It is
important to note that balanced equations such as (2.6) and (2.7) are not closed, since the evolution
equation for the fast wave fields have not been derived yet. Typically wave equations that
hold for time scales much longer than the linear wave time period are derived assuming a
spatial scale separation between waves and mean flow or by concentrating on a few discrete
wave modes [88–90]. Deriving slow equations for a broad spectrum of waves when wave and
balanced flow share similar spatial scales is in general extremely challenging. Furthermore, one
of the benefits of having coupled wave-balance equations is that energy exchanges between
the two fields can be examined. However, the accuracy of wave-balance energy transfer
estimates that can be obtained from asymptotic models such as (2.6) and (2.7) coupled with
asymptotically approximated wave evolution equations is a priori unclear, especially in turbulent
oceanic flows spanning multiple spatio-temporal scales. Given these caveats, we might consider
slow balanced equations such as (2.6) and (2.7) primarily as indicators of waves affecting
balanced dynamics. Direct numerical integration of the governing equations is inevitable to
get a firm grip on estimates on turbulent wave-balance energy exchanges. In the following
section, we survey numerical results on wave-balance exchanges undertaken over the past
few years.

3. Wave-balance exchanges from numerical experiments
In this section, we will review numerical investigation results on wave-balance interactions. As
can be seen in the example frequency spectrum shown in figure 1a, near-inertial waves, internal
tides and the internal wave continuum are prominent internal wave signals observed in the ocean
and depending on the geographical location and season, the strength of these waves can vary
significantly. Below we will examine how these different wave components interact with the slow
balanced component.

(a) Lowmode internal tides
The gravitational attractive force of the sun and the moon on the earth results in the excitation
of barotropic or external tides on earth. Out of all the different solar and lunar tidal components,
the dominant share of the total tidal power input goes into the lunar M2 tidal component with
a time scale of 12 h and 25 min [59,91]. The dominance of this tidal component is often marked
by a distinguished peak in oceanic frequency spectra, as can be seen in figure 1a. Given that
this tidal source pumps O(1 TW) of power into the ocean, mechanisms and locations of tidal
dissipation has been an active research question in oceanography. Theoretical calculations going
back almost a century led oceanographers to believe that the barotropic tide dissipated most of
its energy in shallow oceanographic regions via bottom drag [92,93]. This conventional wisdom
however changed as a result of the landmark TOPEX/POSEIDON satellite mission. Analysis of
altimeter data from the TOPEX/POSEIDON mission revealed that about a third of the barotropic
tidal energy gets converted to baroclinic tides in open oceanographic regions, this barotropic to
baroclinic tidal conversion acting as an energy sink for barotropic tides. The scattering of the
barotropic tide at bottom topographic features such as sea mounts is the primary mechanism for
the generation of baroclinic tides [94–96], also known as internal tides (ITs hereafter).

The first-mode baroclinic tide contains the dominant fraction of IT energy and is often
seen to propagate thousands of kilometres away from its generation site [97–99]. Similarly, the
geostrophic balanced flow harbours a major share of its energy in the barotropic and the first
baroclinic mode, this being inferred from theoretical calculations, observations and idealized
numerical simulations [74,76,100,101]. Therefore, both the balanced flow and internal tides share
comparable spatial scales of O(100 km), leading to two-way interactions between the two fields:
balanced flow can affect baroclinic tides and baroclinic tides can affect balanced dynamics.

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

11
 A

ug
us

t 2
02

3 



9

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A479:20220565

..........................................................

Among the studies that have examined this interaction, major share of the work has gone into
exploring the effect of balanced mesoscale flow on the propagation of baroclinic tides.

As low-mode ITs propagate through the ocean, the background mesoscale eddy field can
modulate, inhomogenize and scatter the waves. This process by which a tidal wave field
can become incoherent due to scattering by balanced flow and the energetics associated with
the process has been investigated based on in situ measurements, satellite altimeter datasets
and numerical simulations [98,99,102–109]. These studies reveal that only a small fraction of
low mode tidal energy, typically less than 5% wave energy, is lost to higher baroclinic wave
modes in the low Rossby number regime as the wave propagates O(100–1000) km. The primary
result of eddy-low mode tide interaction is the scattering of wave energy into other horizontal
wavenumbers, thereby inhomogenizing the wave field. The scattering of ITs by the vortical
mode can be intuitively seen using resonant interaction theory. In this formalism, a vortical
mode can act as a catalyst in transferring energy between wave modes with the same frequency
propagating in different directions [110–112]. Significant efforts have been channelled in this
research direction primarily because the incoherent tidal signal makes it difficult to analyse
satellite altimeter datasets and unambiguously extract the balanced flow component from the
total flow field. Consequently, having access to a simpler model to track the loss of coherence of
a tide propagating through an eddy field is highly useful. Motivated by this, Wagner et al. [114]
derived an amplitude equation for capturing the scattering of low mode tides by balanced eddies.
With a similar goal of developing a reduced model, Savva & Vanneste [113] derived a kinetic
wave equation for IT scattering by mesoscale flows. These reduced models can be conveniently
integrated with lower computational resources, making them more useful for practical
purposes.

An illustration of tidal scattering from Wagner et al. [114] is shown in figure 2, with panels 2a–d
showing the wave velocity magnitude and panels 2f –i showing the spectrum of the wave field as
time increases from left to right. Observe from panels 2a–d how the wave field becomes incoherent

as time progresses. For the internal wave dispersion relationship ω=
√

f 2 + N2k2
h/k

2
z , choosing

the vertical mode to be the first baroclinic mode leads to all horizontal wavenumbers that lie
on a circle (i.e. a constant value for kh) to have the same tidal frequency. The scattering process
leads to the transfer of energy to new horizontal wavenumbers of the same tidal frequency, this
process leading to the gradual illumination of a circle in spectral space. Of course, the presence
of near-resonant and non-resonant exchanges changes the circle to a ring of finite thickness. This
scattering process resulting in the wave spectrum evolving towards a ring in spectral space can
be seen in panels 2f –i. Furthermore, the spectral ring formation of the IT field is often seen in
realistic oceanographic data. An example is shown in figure 2e, obtained using satellite altimeter
data discussed in [115]. It is noteworthy that contrary to the idealized numerical result shown in
panels 2a–d and 2f –i that isolates the role of balanced eddies on internal tide, oceanic tidal spectra
such as the ones shown in figure 2e have more realistic ingredients that are difficult to separate.
In addition to waves being scattered by eddies, realistic spectra such as figure 2e is the result of
internal tides interacting with bottom topographic features and interference with other waves in
the ocean. Separating and differentiating between different causes of tidal scattering from realistic
datasets is still a challenge. Nevertheless, we note that the major effect of the mesoscale flow on
the IT field is to scatter and inhomogenize the waves, this effect being well studied using primitive
equation models and being captured by reduced mathematical models.

In addition to ITs being inhomogenized and scattered by the balanced flow, ITs can affect
balanced flow dynamics. Given that the energy levels of geostrophic balanced flow and low
mode ITs are highly variable over the global ocean [47,99], depending on the specific location,
wave energy can be comparable to or higher than balanced energy. Inspired by these different
relative energy regimes, Thomas & Yamada [116] examined how the first baroclinic mode ITs
affect balanced flow dynamics and modify the two-mode QG phenomenology. Figure 3 provides
the main results of [116]. Figure 3a shows the barotropic vorticity field in the CW regime: notice
that the flow is rich with large-scale coherent vortices showing tendencies to merge and grow
further. Despite waves being present, they have little effect on the turbulent dynamics of the
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Figure 2. Panels (a–d) and (f–i) are adapted from [114] with permission, copyright 2017 Cambridge University Press, and show
the scattering of the first baroclinic mode tide by a geostrophic flow. Panels (a–d) show the magnitude of wave velocity in
m s−1 at different times. Notice how the wave field becomes scattered and inhomogenized as time increases from left to right.
Panels (f–i) show the log of normalized spectrum of the wave field at different times. As the wave field gets scattered by the
eddy field, the spectrum illuminates a ring. Panel (e) shows the spectrum of tidal flow from satellite altimeter dataset detailed
in [115]. Note the bright ring-like structure in the spectrum.

balanced flow in the CW regime. The baroclinic balanced mode transfers energy to the barotropic
mode in this regime, as in the QG regime. By contrast, figure 3b shows the barotropic vorticity
field in the SW regime. High energy waves destroy large-scale coherent vortices resulting in the
formation of energetic small-scale vortical structures throughout the domain. Figure 3c shows
the energy transfers between different modes in the SW regime. The red arrows indicate all
the energy transfers that appear in the presence of high energy waves, while the blue arrow
indicates the energy transfer between balanced modes alone. The balanced energy can increase
by a factor of 2–10 over a few hundred eddy turn over time scales due to energy transfer from
waves. By contrast, both QG and CW regimes are characterized by the energy transfer between
balanced modes alone, as indicated by the blue arrow. Figure 3c may therefore be considered as
a comprehensive illustration of the barotropic mode-baroclinic mode energy transfers. If wave
energy is not high enough, such as in the CW regime, or if waves are absent, as in the QG regime,
transfers marked by the red arrows disappear and only the transfer indicated by the blue arrow
remains. The well-known two-mode QG turbulence phenomenology may therefore be considered
to be a subset of figure 3c obtained by dropping waves.

(b) Near-inertial waves
The near-inertial wave (NIW) band in the ocean receives about 0.3–1.5 TW of global power input
due to the wind work on the upper ocean [117–119], and this power input is comparable to the
global tidal power input. The high power input into the NIW band leads to a distinguished peak
around the inertial frequency in typical oceanic frequency spectra, as can be seen for example
in figure 1a. Primarily generated by atmospheric winds and storms, NIWs are ubiquitous in the
upper ocean [4,120]. The extremely large horizontal scales of these waves and their small vertical
scales result in NIWs having relatively low propagation speeds. Their prominent presence in the
upper ocean, their low propagation speeds, and their high-energy content make NIWs attractive
candidates for energy exchange with mesoscale eddy fields. Consequently, NIWs have been the
most studied oceanic wave field in connection to wave-balance energy exchanges. Owing to their
large horizontal scales and small vertical scales, i.e. kh/kz � 1, the internal waves’ dispersion

relationship ω=
√

f 2 + N2k2
h/k

2
z simplifies as ω≈ f for NIWs, making their frequencies confined to

the inertial frequency f . As a result, the wave field can be approximated as u′ + iv′ = A(x, z, T) e−ift,
where t is a fast time scale of the order of the inertial period while T is a slow time scale of the
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Figure 3. Figure, based on results detailed in [116], shows the effect of the first baroclinic mode tide on balanced flow. Panel
(a) shows the non-dimensional barotropic vorticity field, i.e. the barotropic vorticity normalized by the rotation rate f , in the
CW regime. Panel (b) similarly shows the non-dimensional barotropic vorticity field in the SW regime. Panel (c) shows the
barotropic–baroclinic energy transfers. The blue arrow shows energy transfer frombaroclinic to barotropicmode. This is the only
energy transfer in the QG regime. Additionally, this is the only noticeable energy transfer in the CW regime, since wave-balance
energy transfers are negligible in this regime. The red arrows show all the new transfers that appear in the presence of waves in
the SW regime.Waves primarily transfer energy to the balancedflow, both barotropic and baroclinic, resulting in the destruction
of large-scale coherent vortices as seen in panel (b).

order of eddy turn over time scale. In the low Rossby number regime assuming a time scale
separation between fast NIWs and slow eddy field, using the method of multiscale asymptotics
Young & Ben Jelloul [121] derived an amplitude equation for the NIW amplitude, which can be
written in abstract form as

∂A
∂T

+ L(A) + B(ψ , A) = 0, (3.1)

where L is a linear operator and B(ψ , A) captures the effect of the balanced flow on waves.
Equation (3.1) is often identified as the Young and Ben Jelloul (YBJ) equation, and it captures
the slow evolution of the NIW amplitude in the presence of a balanced eddy field. We wrote the
above equation in abstract form since the YBJ equation can be written in different forms in two
and three dimensions [121]. Despite being an approximate asymptotic model, the YBJ equation
(3.1) is a robust model that can capture the slow advection, refraction, and scattering of NIWs
by balanced flows and subsequent reduction in waves’ horizontal scales, vertical propagation of
NIWs and accumulation of NIWs in anticyclonic vortices [122–131].

A simple illustration of NIWs interacting with a balanced eddy field obtained by the numerical
integration of the primitive equations linearized with respect to a balanced flow is shown in
figure 4. The same results can be obtained by integrating the appropriate YBJ equation (see
discussions in [128]). An idealized barotropic vorticity field that is composed of two cyclonic
and two anticyclonic vortices is shown in figure 4a. Figures 4c–e show the NIW kinetic energy at
a fixed vertical depth, 100 m below the upper ocean surface, as time progresses from left to right.
The wave field is initially horizontally homogeneous, mimicking extremely large horizontal scales
of NIWs. However, interaction with the eddy field shown in figure 4a imprints smaller horizontal
scales on the wave field. This is followed by the expulsion of the waves from cyclonic vortices
and accumulation of waves in anticyclonic vortices and vertical propagation of waves. Since
higher concentration of NIWs are associated with anticyclonic vortices, the dominant fraction of
NIW energy is transferred to interior parts of the ocean via anticyclonic vortices. This feature
is often termed the inertial chimney effect and is found in large-scale ocean model outputs
and idealized simulations [128,130,133]. Although the illustration in panels 4a, c–e is extremely
idealized, the particular case was chosen above to clearly highlight the trapping of waves in
anticyclonic vortices. Realistic oceanic geostrophic vortices are turbulent and multiscale in nature.
Nevertheless, the higher concentration of NIWs in anticyclonic vortices is a generic feature
observed in the ocean [132,134–136]. An example from the results based on ocean observations
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Figure 4. Panels (a), (c–e) are adapted from [128] with permission, copyright 2017 Cambridge University Press, and illustrate
the vertical propagation of NIW energy, EW , for a given geostrophic flow. Panel (a) shows the non-dimensional geostrophic
vorticity field (vorticity normalized by the rotation rate f ), ζG . Panels (c), (d) and (e) shows the horizontal structure of NIW
kinetic energy (normalized by an estimate for the balanced kinetic energy) 100 m below the top surface of the ocean at three
different times. Notice howNIW kinetic energy is high in anticyclonic or negative vorticity regions and low in cyclonic or positive
vorticity regions. The vertical propagation of NIWs reduces the intensity of waves on the plane 100 m below the top surface as
time progresses. Panel (b) shows the joint PDF of vertically integrated NIW kinetic energy, 〈EW〉, and geostrophic vorticity, ζG ,
based on observational data discussed in [132]. A linear regression plot between wave energy and vorticity, shown by the black
line, reveals that NIWs are correlated with negative geostrophic vorticity regions.

discussed in [132] is given in figure 4b, where the joint PDF of vertically integrated NIW kinetic
energy and gesotrophic vorticity field is shown. The linear regression between NIW kinetic energy
and geostrophic vorticity is denoted by the black line in the figure. Notice how the black line has
a negative slope, indicating higher correlation between NIWs and anticyclonic vorticity regions.
The trapping of NIWs in anticyclonic vorticity regions is therefore a feature that is consistently
observed in the ocean, and is captured by numerical integration of the primitive equations and
the YBJ equation.

In addition to using the YBJ equation for capturing the wave field’s modulation by the eddy
field, the asymptotic wave equation can also be coupled with balanced flow evolution equations.
Recall that the slow balanced equations (2.6) and (2.7) were not closed due to the absence of
wave equations that evolve on long time scales. The amplitude equation (3.1) is a wave equation
that evolves on long time scales and can be coupled with the balanced flow equations given in
(2.6) and (2.7) to form closed wave-balance asymptotic models. This was recognized by [137]
who coupled the YBJ equation with the slow balanced equation in the SW regime, (2.7). An
interesting feature of the YBJ amplitude equation (3.1) is that it conserves wave kinetic energy.
However, wave potential energy is not conserved and can be exchanged with balanced flows.
The coupled system of [137] therefore conserves total energy and wave kinetic energy separately.
Notably, wave potential energy is proportional to |∇A|2. Consider an NIW wave field that has
extremely large horizontal scales initially. The interaction with the balanced eddy field would
imprint the eddy spatial scales on the wave field as seen in figure 4 and therefore gradients of the
wave field, i.e. |∇A|, would increase once the wave-balance interaction begins. This means that
wave potential energy increases as time progresses. Since wave kinetic energy does not change
and since the sum of wave potential energy and balanced energy is conserved in the asymptotic
model, the increase in wave potential energy is accompanied by a decrease in the balanced energy.
Using the coupled model, Xie & Vanneste [137] pointed this out using numerical simulations
of the asymptotic model, followed by similar conclusions by Wagner & Young [138] and
Rocha et al. [139] using reduced asymptotic models of NIW-balanced flow interactions. The results
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from asymptotic models predict about 5–20% loss of balanced energy within a few tens of eddy
turn over time scales as a result of wave-balance interactions.

The above mentioned mechanism is a means by which wave potential energy increases
by direct extraction of balanced energy. On exploring this interaction problem with primitive
equation models constrained to a barotropic and a single baroclinic mode, Thomas & Arun [140]
found that NIW potential energy did increase at the expense of balanced energy, as predicted by
the asymptotic model based results of [137–139]. However, contrary to the prediction of the YBJ
model, NIW kinetic energy was seen to decrease with time. The drop in NIW kinetic energy was
more than the increase in NIW potential energy, resulting in waves transferring energy to the
balanced flow. Interestingly, almost two decades back, an idealized study using a reduced model
by Gertz & Straub [141] also found that balanced flow was energized by NIWs in low balance
energy regions. The phenomenon of NIWs transferring energy to balanced flow was further
confirmed by three-dimensional Boussinesq equation simulations of Thomas & Daniel [142].
The numerical integration of the full set of equations, rather than the asymptotic models alone,
revealed that NIWs kinetic energy can in general change as much as the changes in NIW potential
energy, making NIW-balanced flow energy transfers much more non-trivial than those predicted
by asymptotic models.

To get a firm grip on NIW-balanced flow energy exchanges in different regimes, Thomas &
Daniel [142] integrated the Boussinesq equations with different balance-to-wave energy ratios.
In general, NIW energy levels are highly variable in the world’s oceans [97,117,119,143–146].
Consequently, although the asymptotic models mentioned above were derived in a SW regime
where wave energy is much stronger than balanced energy, such regimes are observed in the
ocean only when strong winds excite NIWs in oceanic regions where pre-existing balanced energy
is weak (see for example such an event described in [147]). Given the variability in NIWs energy
levels in the world’s oceans, the work of Thomas & Daniel [142] was primarily aimed at exploring
whether NIWs could act as an energy sink for balanced flow in the different regimes. The main
results of Thomas & Daniel [142] are summarized in figure 5. Figure 5a shows the geostrophic
vorticity field in the CW regime. In this regime balanced flow evolves as in the QG regime.
Furthermore, NIWs directly extract energy from the balanced flow in the CW regime, as shown
in figure 5c. Balanced flow loses about 10–20% energy over a few hundred eddy turn over time
scales in this regime. By contrast, the SW regime is characterized by NIWs disrupting large-scale
coherent vortices, as seen in figure 5b. Additionally, NIWs transfer energy to the balanced flow
in the SW regime, as shown in figure 5d, with the gain in balanced energy being 5–15% over a
few tens of eddy turn over timescales. Thomas & Daniel [142] found that while wave potential
energy increased, as expected based on the asymptotic model based results, wave kinetic energy
decreased in both CW and SW regimes. Consequently, the magnitude of change in wave kinetic
energy was the key factor deciding the direction of NIW-balanced flow energy transfers. In the
CW regime, wave potential energy increased more than the decrease in wave kinetic energy,
resulting in waves extracting energy from the balanced flow. On the other hand, wave kinetic
energy dropped more than the increase in wave potential energy in the SW regime, resulting in
waves losing energy to balanced flow in the SW regime.

In addition to energy exchange with balanced flow, much of the NIW dynamics are correlated
to the strength of the balanced flow. Faster vertical propagation of waves and a stronger forward
energy flux of waves resulting in higher small-scale dissipation of wave energy is observed in the
CW regime when compared to the SW regime. Numerical results therefore pinpoint that waves’
forward flux, small-scale dissipation, and vertical propagation are proportional to the strength of
the balanced flow. This finding has also been confirmed from observational results. For instance,
Whalen et al. [148] found that small-scale dissipation of wave energy can increase by an order of
magnitude in the presence of an energetic eddy field when compared with a case where the eddy
field is energetically weak.

Interestingly, the SW regime of NIW-balanced flow interaction has similar features to the SW
regime of IT-balance exchanges. Both wave fields transfer energy to the balanced flow and affect
the formation of large-scale balanced coherent vortices. By contrast, while the CW regime for
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Figure 5. Figure adapted from [142] with permission, copyright 2020 Cambridge University Press, shows results of NIWs on
balancedflow indifferent regimes. The left column, i.e. panels (a) and (c), shows thenon-dimensional geostrophic vorticity field
(vorticity normalized by the rotation rate f ) and thewave-balance energy transfer pathways, respectively, in the CW regime. The
right column shows the same quantities in the SW regime. In the CW regime, as shown by the blue vertical arrows in panel (c),
NIWs directly extract balanced energy. Despite this energy transfer, the balanced flow forms large-scale coherent vortices as in
theQG regime, this feature being seen in panel (a). By contrast, NIWs transfer energy to thebalancedflow in the SWregime (blue
vertical arrows in panel (d)) and destroys large-scale coherent vortices (see panel (b)), resulting in the formation of fine-scale
vortical structures.

IT-balanced flow interactions is characterized by no energy transfer, the CW regime for NIW-
balance exchange is composed of direct extraction of balanced energy by waves; the energy
transfer accompanying the reduction in spatial scales of NIWs during wave-eddy interactions.
As mentioned earlier, the SW regime for NIWs is relevant only when extremely strong winds
excite waves in regions where balanced flow is relatively weak. Consequently, the CW regime is
probably more relevant in the real ocean, and we anticipate NIWs to extract energy from balanced
flow in this regime. Confirming this, realistic ocean model simulations set in eddy permitting
and eddy resolving configurations have found that NIWs can form an energy sink for the slow
balanced flow. For instance, Taylor & Straub [149,150] using realistic ocean models found that
about 5–30% of power input into slow balanced flow can be drained by fast NIWs, this estimate
being in agreement with results from idealized studies mentioned above.

(c) Internal wave continuum
The ocean harbours a broad spectrum of internal gravity waves in the frequency band
f �ω� N, identified as the internal wave continuum (IWC). Based on oceanic datasets, Garrett
and Munk constructed an empirical spectral description of the IWC [151–153]. Although direct
forcing of waves in the ocean is primarily via winds and tide, nonlinear wave-wave interactions
and scattering by the vortical mode is thought to be responsible for the generation of this
broad spectrum of waves from low-frequency waves [154–166]. Multiple oceanic observations
exploring the wave spectrum have revealed that the IWC is highly variable with the strength of
waves’ spectrum being sensitive to the geographical location and season [167–169]. Despite the
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Figure 6. Figure adapted from [172] with permission, copyright 2021 Cambridge University Press, shows results of an internal
wave continuum on balanced flow in different regimes. Left column, i.e. panels (a) and (c) shows the non-dimensional
geostrophic vorticity field (vorticity normalized by the rotation rate f ) and energy transfers, respectively, in the CW regime.
The right column shows similar quantities for the SW regime. In the CW regime balanced flow evolves unaffected by waves
with no noticeable wave-balance energy exchanges. By contrast, the SW regime is characterized by two-way wave-balance
energy exchanges (see vertical blue arrows in panel (d)) along with waves inhibiting the formation of large-scale coherent
vortices in the balanced flow (see panel (b)). The SW regime also features a forward flux of geostrophic energy, as indicated by
the rightward pointing black arrows in panel (d), this being contrary to the inverse flux of balanced flow seen in the CW regime
in panel (c).

variability, the IWC connects the high-energy low-frequency waves to high-frequency low-energy
waves that break and mix the oceans. Owing to their low resolutions, ocean models of the past
have had difficulties in resolving the IWC. However, recent high-resolution simulations of large-
scale ocean models with realistic wave forcing have started resolving the low-frequency part of
this broad waves’ spectrum [39,170,171].

Oceanic datasets from in situ and satellite observations and global scale simulations of the past
two decades have revealed that the internal waves’ spectra can overtake the balanced vortical
spectrum at a certain scale identified as the transition scale. An example for this can be seen in
figure 1d: notice that the red high-frequency spectrum overtakes the blue low-frequency spectrum
roughly around 100 km scales. Similar results can be seen in [35,38,40–42,171]. This transition
scale, where fast waves overtake slow balanced energy spectrum, is highly variable in the world’s
oceans and depends on the geographical location and the season. Inspired by these findings,
Thomas & Daniel [172] used numerical integration of the Boussinesq equations to explore the
interactions between a broad spectrum of waves, forming an IWC, and a balanced flow and the
main highlight of the study is given in figure 6.

Figure 6a shows the geostrophic vorticity field of the CW regime. Similar to the QG regime, the
balanced flow transfers energy upscale and evolves unaffected by waves in this regime. Waves on
the other hand flux their energy downscale and dissipate. As seen in the energy transfer pathways
given in figure 6c, waves and balanced flow remain decoupled in the CW regime. Although
wave and balanced flow do not exchange energy, waves’ forward flux and small-scale dissipation
can be an order of magnitude higher in this regime, when compared with a case where waves
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interact among themselves with no background balanced flow. The SW regime is on the other
hand composed of much more intense wave-balance exchanges as indicated in figure 6b,d. The
broad spectrum of internal waves, as they flux energy downscale, insinuates a forward flux of
balanced flow as well. Consequently, the geostrophic balanced flow exhibits a forward energy flux
in the SW regime, this inhibiting the formation of coherent balanced vortices, as seen in figure 6b.
Furthermore, waves and balanced flow continuously exchange energy in this regime, with no
preferred energy transfer direction. This is in contrast to the SW regime of ITs and NIWs, where
the net energy transfer is unidirectionally from waves to the balanced flow. Additionally, waves’
forward flux and small-scale dissipation is less here relative to the CW regime due to the weaker
balanced flow. In summary, among the different wave fields and the parameter regimes examined
in the small Rossby number regime, the SW regime for a broad spectrum of waves is the only case
where waves can trigger a forward flux and facilitate significant dissipation of balanced energy.
Thomas & Daniel [172] find that about 30–50% of balanced energy can be dissipated at small
scales over a few hundred eddy turn over time scales as a result of the balanced flow interacting
with the IWC in the SW regime.

4. Challenges in quantifying wave-balance energy exchanges from
observational datasets

As is clear from the previous section, a wealth of information on wave-balance energy exchanges
has been obtained from numerical integration of the governing equations in different parameter
regimes. By contrast, oceanic observations are spatially sparse, making it extremely challenging
to examine wave-balance exchanges from observational datasets. Much of the flow fields’ data
is obtained from satellite altimeter and ocean moorings [173]. Satellite altimeter datasets are
confined to the upper ocean and provide limited information on vertical flow features while
moorings provide time series of fields at specific locations. Naturally, multiple assumptions and
interpolations are required to deduce wave-balance energy exchanges from realistic datasets.

To understand the difficulties in examining wave-balance energy transfers from observations,
it is worthwhile looking at the relevant equations. Time averaging the governing equations gives
us the slow evolution equation written in abstract form as

∂U
∂t

+ N(U′, U) = 0. (4.1)

Above U denotes the slow field vector, which includes the velocity components and the buoyancy,
while U′ denotes the fast field, and N indicates the nonlinear terms of the slow equation. Taking
the dot product of (4.1) with U gives us the slow field’s energy equation

∂

∂t

(
U

2

2

)
= −U · N(U′, U) = S. (4.2)

The above equation points out that slow balanced energy changes point-wise, i.e. at every
point (x, y, z) in the domain, due to wave-balance interaction terms on the right-hand side of
the equation. The right-hand side of the above equation, S, gives the rate of energy transfer
between balanced flow and waves. Integrating (4.2) over the entire domain gives us the net energy
transfer as

d
dt

∫
D

1
2

U
2
dX = −

∫
D

U · N(U′, U) dX = T, (4.3)

where the integration above is over the three-dimensional space with X = (x, y, z). Computing the
term T above would inform us whether the balanced energy increases or decreases due to wave
interactions. While above integral can be computed straightforwardly in numerical simulations
where wave and balanced fields are readily available across a large number of grid points
located in the domain, oceanic observations are extremely sparse, making it next to impossible
to accurately compute integrals such as above. The flow fields are often available only at a
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Figure 7. Figure shows Sh, the horizontal part of the energy transfer term S in (4.2). Panels (a) and (b) show the transfer term
in a cold core eddy (CE) and warm core eddy (WE), respectively, plotted as a function of depth. Dashed vertical lines indicate
zero transfer lines. Notice that the transfer term fluctuates about the zero line. Details of this dataset are discussed in [176].

sparse set of points associated with locations where oceanic moorings are based in or satellites
can access. A practical solution to above challenge, often implemented by oceanographers, is to
use time series data from a limited number of points, compute the interaction terms and then
average over long periods of time, with the hope that a long-term average would approximate
a spatial average. Typically, in three-dimensional homogeneous and isotropic turbulence it is
common to use ergodic theory to swap ensemble averaging with time averaging (see discussions
in [174]). However, in oceanic flows, especially at 10–100 km scales where large-scale coherent
vortices, well defined fronts, and wave fields propagating in specific directions interact in
an inhomogeneous and anisotropic environment, it is in general difficult to justify that time
averaging can approximate spatial averaging.

Given the above challenges, quite often it is possible only to compute the components of the
energy transfer term in (4.2) at specific locations, after making a set of simplifying assumptions
to manipulate the sparse datasets obtained from in situ measurements. Assuming a spatial
scale separation between small-scale waves and large-scale balanced flows, Muller [57] derived
equations that capture interactions between waves and slow mean flows that are in geostrophic
balance. The equations so derived are further simplifications of (4.2), where the interaction terms
on the right-hand side of (4.2) were further decomposed into horizontal (Sh) and vertical (Sv)
exchange terms. This interaction equation was used by Polzin [58] and Brown & Owens [175] to
examine wave-balance energy exchanges using in situ datasets.

Recently Qi et al. [176] computed the energy transfer terms described above for NIWs
interacting with balanced flows. Figure 7 shows the horizontal part of the energy transfer term,
Sh, as a function of depth inside a cold and warm eddy. Notice that the term fluctuates around
zero with depth, indicating that at a specific location waves could act as an energy source or
energy sink for balanced flows. On a similar note, using simplified energy transfer equations
used by [57], Polzin [58] and Jing [177] found that NIWs extracted energy from slow balanced
flows in a certain region, while Cusack et al. [178] found that NIWs fed slow balanced flows in a
specific region. As mentioned above, given the sparsity of observational datasets, only point-wise
statements on wave balance transfers can be obtained from realistic datasets. Computing the net
energy transfer term T in (4.3) is infeasible at present due to limited datasets.

As hinted above, a spatial scale separation assumption for wave fields is commonly used for
wave field calculations by oceanographers. The popularly implemented ray tracing or WKBJ
method [179,180] assumes a scale separation such that a small spatial scale wave fluctuating
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on a fast time scale propagates through a large-scale slow evolving mean flow. Despite the
questionable nature of this assumption when applied to realistic wave fields in the ocean, the
technique often results in findings that are qualitatively useful (see for example discussions in
[121,181]). The ray tracing approach was used by Rainville & Pinkel [102] and Chavanne et al.
[104] for low mode ITs propagating through balanced flows. Interestingly, both these studies
found that low mode tides exchanged energy with the background eddy field. However, since
a part of the energy loss of low mode tides could be to higher vertical mode waves as well, there
is an inevitable uncertainty in precise estimates on energy transfers between waves and eddies.

A reader who parsed through the details presented in the previous two sections focusing on
theoretical and numerical studies on wave-balance exchanges is likely to be surprised by the
limited results we have based on oceanic observations, summarized in the above paragraphs.
At present there is no conclusive observational evidence on net energy transfer between waves
and balanced flows since this requires oceanic data with fine resolution in time and space, the
latter needing to be obtained from a large number of moorings arranged at fine resolution
in an oceanic region. The lack of such high-resolution data prevents any sort of comparison
between the results we have from theory and numerics and observations. Consequently, as
mentioned in the previous sections, present observational results are primarily useful to point
out the relevant parameter regimes in the ocean, such as providing us with the relative energy
levels of balance and waves, the dominant wave field, local Rossby number, etc. [44,117,144–
146,182]. Furthermore, some features of wave-balance interactions, such as trapping of NIWs
in anticyclonic mesoscale eddies [132,134–136] and scattering and loss of coherence of ITs by
mesoscale eddies [98,99,102,104,106,107] can be obtained from observational datasets. Theoretical
and numerical investigations can choose relevant regimes based on observations and can cross
check their results qualitatively with some selected features observed in the ocean. Beyond these,
a direct comparison between theory/numerics and observations, especially the predictions of net
wave-balance energy exchanges is far fetched at present.

5. Comparison with interactions in Ro∼ O(1) regime
Having focused on interactions in the Ro � 1 limit so far, in this section we will briefly look at
Ro ∼ O(1) interactions. The last two decades have seen an explosive growth in research focusing
on submesoscale flows with O(1) Rossby numbers based on in situ and satellite altimeter datasets
and ocean model simulations. Energetic submesoscale flows with O(1) Rossby numbers are
typically seen in connection with ocean fronts in high eddy energy regions such as Gulf stream
and Kuroshio Current and in weakly sheared upper ocean flows [81,82,162,183–195]. Given that
the QG equation (2.5) is derived assuming Ro � 1, it is hardly surprising that the characteristic
features of the balanced flow, such as the inverse energy flux and large-scale coherent vortex
formation, are affected as Ro → 1. Internal gravity waves can interact with such O(1) Rossby
number flows and can result in rapid energy loss of both waves and eddy structures. Turbulent
dynamics of O(1) Rossby number flows have been extensively discussed in multiple review
papers in the past [196–198]. Therefore, since the primary focus of this review is interactions in
the Ro � 1 regime, here we will only look at some selected aspects of interactions in O(1) Rossby
number flows.

In the Ro ∼ O(1) regime, a significant amount of work has been dedicated to NIWs interacting
with ocean fronts. Such interactions are reviewed in detail in [199] and the interaction can lead to
instabilities and turbulence, resulting in dissipation of wave and the front. Interestingly, energy
can go from wave to the front or vice versa in different scenarios. Barkan et al. [162] discuss a
study in the O(1) Rossby regime where NIWs can directly extract energy from low-frequency
eddies and also facilitate an enhanced dissipation of around 30% of the power input into the
low-frequency eddy field. Barkan et al. [200] further extended these results based on realistically
forced regional ocean models to conclude that in O(1) Rossby number regime wave-induced
effects can result in depletion of low-frequency mesoscale balanced energy. Similar wave-eddy
interaction experiments with idealized ocean models was undertaken by [201–203] leading to the
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conclusion that waves can transfer energy to or extract energy from coherent eddies and fronts in
the O(1) Rossby number regime. Despite the lack of a specific energy transfer direction, energetic
interactions in the O(1) Rossby number regime generically result in dissipation of the wave and
the coherent structure.

When compared to the Ro � 1 regime interaction results described in the previous sections,
two key features stand out for interactions in the O(1) Rossby number regime. First, fast–slow
exchanges are much more intense and rapid in the O(1) Rossby number regime, leading to the
dissipation of fast and slow fields on a relatively short time scale, in comparison to small Rossby
number regime interactions. To appreciate the second feature, recall that for Ro � 1, the balanced
flow is severely hampered in cases where wave energy levels are much higher than balanced flow,
identified as the SW regime in the previous sections. This is the regime where waves can prevent
the formation of large-scale coherent vortices and can enhance small-scale dissipation of balanced
energy. By contrast, as Ro → 1, even a small amount of wave energy can lead to significant damage
to balanced coherent structures and can dissipate them efficiently; this behaviour being observed
in idealized studies and complex ocean model simulation results [186,194]. The significant drop
in the amount of unbalanced or wave energy needed to dissipate balanced coherent structures
as Rossby number increases is a striking feature that stands out as energetic interactions are
contrasted for different Rossby number flows.

6. Summary and discussion
The oceanographic community in the past have considered O(10–100) km scales to be dominated
by the balanced flow. However, the last two decades of satellite altimeter datasets, in situ
measurements, and realistically forced ocean model outputs have challenged this age old
paradigm. The datasets that have piled up from observations and global scale simulations have
revealed the prominence of energetic internal gravity waves at O(10–100) km scales. At present,
it is understood that waves and balanced flow can share similar spatial scales and in certain
oceanographic regions internal waves can be significantly stronger than balanced flows.

The above-mentioned paradigm shift fueled a broad set of investigations focusing on the
effect of internal waves on balanced flow. In the absence of waves, the balanced flow follows
the QG turbulence phenomenology with an upscale transfer of energy. The role of waves in
modifying QG turbulence phenomenology and the possibility of waves acting as an energy sink
for balanced flow have been key questions that inspired in-depth wave-balance investigations
in the oceanographic setting. This paper was written to provide readers an overview of the
main findings in this direction, amalgamating major results obtained via theory, numerical
simulations, and observations. For convenient reference, we have summarized the main results
on wave-balance exchanges in the small Rossby number regime discussed in the previous sections
in table 1.

(a) Global budget for energy sinks of balanced flow: role of internal waves
As is clear from discussions so far, internal waves lead to significant changes in balanced flow
dynamics in the SW regime. However, this regime is relevant in oceanic regions where wave
energy is significantly higher than balanced energy. As a result, the contribution of such regions
to the global balanced energy would be relatively small. The CW regime on the other hand,
where wave and balanced energy are comparable in strength, is applicable to much of the oceanic
regions across the globe; this being particularly the case for NIWs: see for instance global maps of
waves and balanced flow discussed in [44]. Furthermore, as pointed out earlier in §3b, NIWs can
directly extract energy from balanced eddies in the CW regime and forced-dissipative numerical
simulations in realistic configurations reveal that the energy extraction rate could be 5–30% of
the power input into the low-frequency eddy field. If we conservatively set the global average
extraction to be 10%, we have 0.08 TW out of the 0.8 TW power going to the geostrophic balanced
flow being extracted by NIWs globally. Recall that this number corresponds to low Rossby
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Table 1. Summary of wave-balance exchanges in the small Rossby limit. Interactions between balanced flow and low-mode
internal tides (ITs), near-inertial waves (NIWs), and the internal wave continuum (IWC) are listed above.

effect of waves on balanced flow effect of balanced flow on waves’

no. wave field regime dynamics dynamics

1 IT CW Balanced flow does not exchange
energy with waves.

Waves are scattered and
inhomogenized by the balanced
flow. Less than 5% of first mode
tidal energy is lost to higher modes
over thousands of inertial periods.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 IT SW Waves transfer energy to the
balanced flow. As a result, balanced
energy can increase by a factor of
2–10 over a few hundred eddy turn
over time scales.

Same as above, although the
scattering of waves and their
inhomogenization decreases since
balanced energy here is much less
than in the CW regime.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 NIW CW Balanced flow can lose energy to
waves. Waves can extract 10–20%
of balanced energy over a few
hundred eddy turn over time
scales, depending on the specific
magnitudes of wave and balanced
energy.

Balanced flow accelerates the
vertical propagation and enhances
forward flux and small-scale
dissipation of waves. When
compared to a case with no eddy
field, waves’ small-scale dissipation
can increase by as much as a factor
of 10 in the presence of an energetic
eddy field.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 NIW SW Balanced flow can gain energy from
waves. Energy gain of balanced
flow can vary from 5–15% over a
few tens of eddy turn over time
scales depending on the specific
magnitudes of wave and balanced
energy.

Same as above, although waves’
vertical propagation, forward
flux and small-scale dissipation
is substantially weaker due to
the eddy field being weaker here
relative to the above regime.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 IWC CW Balanced flow does not exchange
energy with waves.

Waves’ forward flux and small-
scale dissipation is enhanced by
the balanced flow. Compared to a
casewith no background eddy field,
waves’ forward flux and small-scale
dissipation can increase by as much
as a factor of 10 in the presence of an
energetic balanced flow.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6 IWC SW Balanced flow exhibits a forward
energy flux and small-scale
dissipation. Balanced energy loss
can vary from 30–50% over a few
hundred eddy turn over time scales
in this regime.

Same as above, although waves’
forward flux and small-scale
dissipation drops substantially here
compared to the above case due to
the lower balanced energy level.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

number energy extraction alone. If we include O(1) Rossby number interactions detailed in §5
as well, we may increase the number to 0.1 TW of energy loss for balanced flow. This estimate of
0.1 TW might be thought of as a lower bound for internal wave-induced energy sink of balanced
flow.
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Based on estimates of other known energy sinks of balanced flow, we will now attempt to
close the energy budget of balanced flow. If we attribute about 0.2 TW of balanced energy loss at
western boundaries [50,52,53,204,205], 0.3 TW loss of balanced energy to bottom boundary layer
drag [49,51], 0.15 TW to eddy energy loss due to interaction with rough topographic features
and associated dissipation [54,55,206,207], and 0.05 TW to atmospheric winds damping mesoscale
eddies [208–210], we have the net loss of balanced flow to be 0.1 TW (internal waves) + 0.2 TW
(western boundaries) + 0.3 TW (bottom boundary layer drag) + 0.15 TW (rough topography) +
0.05 TW (atmospheric winds) = 0.8 TW. The different energy sinks can therefore add up to 0.8 TW,
the net power input into the geostrophic energy field. Of course, the numbers we put in
above are again approximate since there are significant uncertainties associated with them as
noted in the references above. Nevertheless, we added up the approximate contribution of
each energy sink above to point out that the different mechanisms can together dissipate and
thereby equilibrate the geostrophic balanced flow in the ocean. Furthermore, the approximate
estimates above indicate that internal waves can form a non-negligible global sink for balanced
energy.

(b) Future
We will conclude this paper by pointing out some unresolved directions related to wave-balance
exchanges that needs to be undertaken by future studies.

— Parametrization of wave-induced effects on balanced flow: given that waves can affect
the balanced eddy field in the ocean, it is imperative that wave-induced effects are
parametrized in large-scale ocean models. Parametrization of mesoscale eddy field
is actively carried out in ocean models [211–215] and similar initiatives need to be
undertaken to account for the effect of waves on mesoscales and submesoscale flows
in the ocean. From table 1, it follows that depending on the relative energy level of wave
and balanced flow and the kind of wave field, waves can extract energy from balanced
flow or transfer energy to balanced flow. As a result, any attempt to parametrize the effect
of waves in large-scale ocean or climate scale models must take into account the details of
the wave field. In other words, one size does not fit all: parametrizations will need to adapt
dynamically depending on the dominant wave field and its energy level.

— Waves and tracer dispersion: as mentioned in the Introduction, identifying the role of
waves in modifying QG turbulence and the features of the balanced flow has been the
driving force for much of the work reviewed in this paper. Waves affecting and modifying
balanced flow dynamics leads to interesting secondary consequences. For example,
studies investigating lateral dispersion of tracers in the ocean find that tracer stirring
is more efficient than that expected based on QG turbulence scaling [216–222]. Although
observational datasets, ocean model outputs and idealized studies have pointed out that
waves can enhance lateral dispersion of tracers [223–226], the detailed role of different
kinds of internal waves across broad parameter regimes in modifying lateral dispersion of
tracers and turbulent tracer diffusivity remain unclear. An in-depth study in this direction
would benefit the oceanographic community in developing diffusivity parametrizations
at mesoscales and submesoscales for large-scale ocean models.

— Waves and balanced flow instabilities: given that internal waves and balanced flow
coexist at similar spatial scales in the ocean, it would be useful to understand how the
instabilities of the geostrophic flow get modified by the presence of waves. Baroclinic
instability, for example, is usually studied in the context of the QG equation that discards
waves. However, as (2.6) and (2.7) shows, internal waves can modify the QG equation
and could therefore modify the balanced flow instabilities. The catalytic effects of waves
on balanced flow have been noted in multiple idealized numerical simulations [227–230].
Although a broad set of geophysical flow instabilities have been identified, including
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those in the limit of O(1) Rossby numbers [231–235], the role of internal waves in balanced
flow instabilities remains unclear at present.

— Balance in Ro ∼ O(1) regime: in comparison to the matured level of results from
the low Rossby number-based studies, much remains unknown in the O(1) Rossby
number regime. In this regard, one of the challenges with O(1) Rossby number regime
investigations is the lack of an unambiguous criterion for identifying balanced flow.
A firm footing on balanced flow definitions that would hold equally well at low and
O(1) Rossby number regimes would significantly benefit studies exploring geophysical
turbulence in mesoscale and submesoscale regimes. Consequently, dedicated studies that
underpin precise definitions of balanced flow that would hold in O(1) Rossby number
regime will be highly valuable for future investigations.

— Connecting different flow decompositions: multiple fast–slow and wave-balance
decompositions are in use at present. These include the linear wave-balance
decomposition that is based on the linear equations (2.3) (e.g. [172]), Eulerian fast–
slow decomposition based on time filtering Eulerian fields (e.g. [162]), Lagrangian
fast–slow decomposition based on time filtering of Lagrangian fields (e.g. [202]), and
approximate asymptotic decompositions (e.g. [71]). The usage of these different kinds
of flow decompositions makes it difficult to compare and contrast results from different
studies. To highlight an example issue, although the Eulerian fast–slow decomposition
would provide us with a slow field, the slow field is not necessarily in geostrophic
balance. As a result, it is not straightforward to compare the results from Eulerian fast–
slow decomposition with the linear wave-balance decomposition. Consequently, it will
be beneficial to have a detailed understanding of how to connect the results of studies
that use different kinds of flow decompositions.

In summary, the past decade of theoretical and numerical investigations, inspired by observations
and high-resolution global scale ocean model outputs, have unraveled significant amounts
of details on turbulent transfers between internal waves and balanced flows. These studies
have clearly indicated that internal waves can modify QG turbulent dynamics in different
parameter regimes and assert the need for introducing wave parametrizations in large-scale
ocean models that are far from resolving internal waves. Development of wave-parametrizations
for oceanic general circulation modes, identifying the secondary role of waves on flows, such
as their effect on lateral dispersion of tracers, introducing new unambiguous definitions of
balance across parameter regimes, and making closer connections between in situ and satellite
measurements based results and theory/numerics are challenges that hopefully will be resolved
in the near future.
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Appendix A. Boussinesq equations and non-dimensionalization
The Boussinesq equations on the f-plane in the hydrostatic limit, and in the absence of viscous
and diffusive processes, are given by

Dv

Dt
+ f ẑ × v + ∇p = 0, (A 1a)

Db
Dt

+ N2w = 0, (A 1b)

∂p
∂z

= b, (A 1c)

and ∇ · v + ∂w
∂z

= 0, (A 1d)

where v = ux̂ + vŷ is the two-dimensional velocity vector, w is the vertical velocity, p is the
pressure is the pressure, b is the buoyancy, N(z) is the buoyancy frequency, f is the rotation rate,
∇ = x̂∂/∂x + ŷ∂/∂y, and D/Dt = ∂/∂t + v · ∇ + w∂/∂z.

We non-dimensionalize the governing equations above as

t → t
f

, x → Lx, z → Hz, N → N0N, v → Uv

and w → (HU/L)w, p → (fUL)p, b →
(

fUL
H

)
b

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(A 2)

In the above scaling, the inertial frequency f was used to scale time while the vertical length
scale was chosen as the depth of the domain, H. N0 is a reference buoyancy frequency used to
scale the dimensional buoyancy frequency N(z). We chose the horizontal length scale to be the
deformation scale, L = N0H/f . Horizontal velocity was scaled using an arbitrary velocity scale, U,
and the scale for vertical velocity, HU/L, was chosen to satisfy continuity equation (A 1d). The
scale for pressure was chosen such that horizontal pressure gradient (∇p) was of the same order
as the Coriolis term (f × v). Finally, the scale for buoyancy was obtained by setting the vertical
pressure gradient ∂p/∂z to be of the same order as buoyancy, b. We further introduce the slow
time T = εt so that the time derivative term becomes ∂/∂t → ∂/∂t + ε∂/∂T. Using the above in
(A 1) gives us the non-dimensional equations (2.1).

Equations (A 1) possess an exact material invariant: potential vorticity (see § 4.7.2 in [7])

D
Dt

[(ω3D + f ẑ) · (∇3Db + N2ẑ)] = 0. (A 3)

Above ω3D = ẑ × ∂v/∂z + ζ ẑ, with ζ = ∂v/∂x − ∂u/∂y and ∇3D = x̂∂/∂x + ŷ∂/∂y + ẑ∂/∂z.
A feature of the potential vorticity field is that in general the quantity is non-zero even for

a fluid at rest. This can be seen from the expression given inside the square bracket of (A 3):
notice that fN2 is the quantity that remains when we set v = 0, b = 0. To overcome this and to
restrict potential vorticity to dynamics of the flow, Wagner & Young [71] introduced the concept
of available potential vorticity (APV). Similar to the concept of available potential energy, APV
is obtained by subtracting the potential vorticity contribution of a fluid at rest from the full
potential vorticity expression. After manipulating the non-dimensionalized APV equation (see
the procedure detailed in §3 of [71]), we get

∂Q
∂t

+ v · ∇Q + w
∂Q
∂z

= 0, Q =Π + εΓ + ε2Θ , (A 4a)

where Π = N2
[
ζ + ∂

∂z

(
b

N2

)]
, Γ =

(
ẑ × ∂v

∂z

)
· ∇b + ζ

∂b
∂z

− Λ′′

2N2 b2 (A 4b)

Θ = − d
dz

(
Λ′′

N2

)
b3

6N2 and Λ′′ = d2Λ

dz2 with Λ= ln N2 (A 4c)
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Appendix B. O(ε) equations and averaging
At O(ε) (2.1) gives us

∂v1

∂t
+ ẑ × v1 + ∇p1 + ∂v0

∂T
+ v0 · ∇v0 + w0

∂v0

∂z
= 0, (B 1a)

∂b1

∂t
+ N2w1 + ∂b0

∂T
+ v0 · ∇b0 + w0

∂b0

∂z
= 0, (B 1b)

∂p1

∂z
= b1 (B 1c)

and ∇ · v1 + ∂w1

∂z
= 0. (B 1d)

which on fast time averaging gives us

ẑ × v1 + ∇p1 + ∂v0

∂T
+ v0 · ∇v0 + v′

0 · ∇v′
0 + w′

0
∂v′

0
∂z

= 0, (B 2a)

N2w1 + ∂b0

∂T
+ v0 · ∇b0 + v′

0 · ∇b′
0 + w′

0
∂b′

0
∂z

= 0, (B 2b)

∂p1
∂z

= b1 (B 2c)

and ∇ · v1 + ∂w1

∂z
= 0. (B 2d)

We now use the following identities in the above equations:

v′
0 · ∇v′

0 + w′
0
∂v0

∂z
= ẑ × vS + 1

2
∇pS (B 3a)

and

v′
0 · ∇b′

0 + w′
0
∂b′

0
∂z

= N2wS, (B 3b)

where the Stokes velocity (vSx̂ + wSẑ) and pressure field (pS) above are given by

(vS, wS, pS) =
(

ξ ′
0 · ∇ + η′

0
∂

∂z

)
(v′

0, w′
0, p′

0). (B 4)

The identities in (B 3) were derived in [71]. However, we have included the necessary steps in
appendix D so that the reader can follow the calculations without a break in continuity.

Substituting (B 3a) and (B 3b) in (B 2a) and (B 2b) gives us

v1 + vS = ẑ × ∇
(

p1 + pS

2

)
− ∇ ∂p0

∂T
− (v0 · ∇)∇p0 (B 5a)

and

w1 + wS = − 1
N2

(
∂2p0
∂T∂z

+ v0 · ∇ ∂p0
∂z

)
. (B 5b)

We now take the curl of (B 5a) to obtain

ζ 1 =�

(
p1 + pS

2

)
− 2∂

[
∂p0
∂x

,
∂p0
∂y

]
− ẑ · ∇ × vS, (B 6)
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where ζ 1 = ẑ · ∇ × v1 and ∂[f , g] = ∂f/∂x∂g/∂y − ∂f/∂y∂g/∂x is the Jacobean. Thus, we obtain the
slow part of APV at this order as

Π1 = N2

{
ζ 1 + ∂

∂z

(
b1

N2

)}

= N2

{
�

(
p1 + pS

2

)
+ ∂

∂z

(
1

N2

∂p1
∂z

)
− 2∂

[
∂p0
∂x

,
∂p0
∂y

]
− ẑ · ∇ × vS

}
, (B 7)

where we used (B 2c) to arrive at the last expression above.
The APV equation (2.2) at order O(ε) gives us

∂

∂t
(Π1 + Γ0) + ∂Π0

∂T
+
(

v0 · ∇ + w0
∂

∂z

)
Π0 = 0, (B 8)

where

Γ0 =
(

ẑ × ∂v0

∂z

)
· ∇b0 + ζ

∂b0

∂z
− Λ′′

2N2 b0
2. (B 9)

Fast time averaging (B 8) to eliminate secular growth gives us

∂Π0

∂T
+ v0 · ∇Π0 = 0. (B 10)

Using the linear equations connecting balanced flow variables in (2.3) simplifies (B 10) to give
us (2.5).

It is interesting to note that even though at the present asymptotic order of O(ε) fast waves
project on slow variables, as can be seen from (B 2) and (B 5) for example, waves do not affect
leading-order APV or project on the leading-order slow APV evolution equation (2.5). To capture
the effect of waves on slow balanced dynamics, we need to proceed to the next asymptotic
order. As mentioned earlier, the leading-order QG equation (2.5) is formally valid for T ∼ O(1)
time scales. To capture the effect of waves on slow dynamics, we need to derive a higher-order
approximation of the slow equation valid for longer time scales, T ∼ (1/ε). With this goal, we set

∂Π0

∂T
+ v0 · ∇Π0 = εΦ, (B 11)

where Φ is a correction term and will be obtained by eliminating secular growth at next order of
asymptotics. This procedure of obtaining higher-order correction term is an asymptotic strategy
that is described in [89] and was used in the same form as above in [70] to derive higher-order
corrections to QG in rotating shallow water equations. We will determine the correction term Φ

by eliminating resonant growth at O(ε2) below.
To complete the asymptotic procedure at O(ε), we first subtract (B 10) from (B 8) and use the

fast–slow decomposition Π1 =Π1 +Π ′
1 and Γ0 = Γ 0 + Γ ′

0 in (B 8) to get

∂

∂t
(Π ′

1 + Γ ′
0) +

(
v′

0 · ∇ + w′
0
∂

∂z

)
Π0 = 0, (B 12)

which can be integrated in fast time t to obtain

Π ′
1 + Γ ′

0 = −
(

ξ ′
0 · ∇ + η′

0
∂

∂z

)
Π0. (B 13)

We then time average (B 9) and use the linear equations (2.3) to get

Γ 0 = ζ 0
∂b0

∂z
+
(

ẑ × ∂v0

∂z

)
· ∇b0 − Λ′′

2N2 b0
2 + ζ ′

0
∂b′

0
∂z

+
(

ẑ × ∂v′
0

∂z

)
· ∇b′

0 − Λ′′

2N2 b′
0

2 (B 14)

= ∂2p0
∂z2 �p0 −

(
∇ ∂p0
∂z

)2
− Λ′′

2N2

(
∂p0
∂z

)2
+ ζ ′

0
∂b′

0
∂z

+
(

ẑ × ∂v′
0

∂z

)
· ∇b′

0 − Λ′′

2N2 b′
0

2. (B 15)

At this point, we have all the variables required at O(ε) and we will therefore proceed to O(ε2).
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Appendix C. O(ε)2 equations and averaging
The APV equation (2.2) at O(ε2) is

∂

∂t
(Π2 + Γ1 +Θ0) + ∂

∂T
(Π1 + Γ0)

+
(

v0 · ∇ + w0
∂

∂z

)
(Π1 + Γ0) +

(
v1 · ∇ + w1

∂

∂z

)
Π0 +Φ = 0, (C 1)

which on fast time averaging gives us

∂

∂T
(Π1 + Γ 0) + v0 · ∇(Π1 + Γ 0)

+
(

v′
0 · ∇ + w′

0
∂

∂z

)
(Π ′

1 + Γ ′
0) +

(
v1 · ∇ + w1

∂

∂z

)
Π0 +Φ = 0, (C 2)

where we used w0 = 0 from (2.3).
We now use (B 13) to manipulate a term in (C 2) as

(
v′

0 · ∇ + w′
0
∂

∂z

)
(Π ′

1 + Γ ′
0)

= −
(

v′
0 · ∇ + w′

0
∂

∂z

)(
ξ ′

0 · ∇ + η′
0
∂

∂z

)
Π0 =

(
ξ ′

0 · ∇ + η′
0
∂

∂z

)(
v′

0 · ∇ + w′
0
∂

∂z

)
Π0

=
{[(

ξ ′
0 · ∇ + η′

0
∂

∂z

)
v′

0

]
· ∇ +

[(
ξ ′

0 · ∇ + η′
0
∂

∂z

)
w′

0

]
∂

∂z

}
Π0

+ ((ξ ′
0 + η′

0ẑ)(v′
0 + w′

0ẑ)) · ·∇∇Π0

=
(

vS · ∇ + wS ∂

∂z

)
Π0. (C 3)

Above the double contraction term vanishes, as may be verified using the Einstein summation
convention. Substituting (C 3) in (C 2) and then forming the sum (B 11) + ε(C 2) eliminates Φ and
gives us

∂

∂T
[Π0 + ε(Π1 + Γ 0)] + v0 · ∇[Π0 + ε(Π1 + Γ 0)]

+ ε

[
(v1 + vS) · ∇ + (w1 + wS)

∂

∂z

]
Π0 = O(ε2). (C 4)

We now note the following two equations derived in appendix E:

(v1 + vS) · ∇Π0 =
[

ẑ × ∇
(

p1 − (∇p0)2

2
+ pS

2

)]
· ∇Π0

− ∂

∂T
[∇p0 · ∇Π0] − (v0 · ∇)(∇p0 · ∇Π0) + O(ε) (C 5)

and

(w1 + wS)
∂Π0

∂z
= − 1

N2
∂

∂T

(
∂p0
∂z

∂Π0

∂z

)

− 1
N2

(
v0 · ∇

(
∂p0
∂z

∂Π0

∂z

)
+
[

ẑ × ∇
(

1
2

(
∂p0
∂z

)2
)]

· ∇Π0

)
+ O(ε). (C 6)
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Substituting (C 5) and (C 6) in (C 4) gives us

∂

∂T

[
Π0 + ε

(
Π1 + Γ 0 − ∇p0 · ∇Π0 − 1

N2

∂p0
∂z

∂Π0

∂z

)]

+ v0 · ∇
[
Π0 + ε

(
Π1 + Γ 0 − ∇p0 · ∇Π0 − 1

N2

∂p0
∂z

∂Π0

∂z

)]

+ ε

[
ẑ × ∇

(
p1 + pS

2
− (∇p0)2

2
− 1

2N2

(
∂p0
∂z

)2
)]

· ∇Π0 = O(ε2). (C 7)

To derive a consistent slow evolution equation, we combine slow fields at O(1) and O(ε) as
ψ = p0 + εp1 and drop the O(ε2) higher-order error term on the right-hand side of (C 7) to get (2.6).

Appendix D. Stokes identities
For convenient manipulation of expressions that follow, we introduce particle displacement
field, (ξ ′

0, η′
0) so that v′

0 = ∂ξ ′
0/∂t, w′

0 = ∂η′
0/∂t. Using this, we may integrate the buoyancy and

continuity equations for the fast fields in (2.3) to obtain

b′
0 = −N2η′

0, ∇ · ξ ′
0 + ∂η′

0
∂z

= 0 (D 1)

(
v′

0 · ∇ + w′
0
∂

∂z

)
v′

0 = −
(

ξ ′
0 · ∇ + η′

0
∂

∂z

)
∂v′

0
∂t

= ẑ ×
(

ξ ′
0 · ∇ + η′

0
∂

∂z

)
v′

0 +
(

ξ ′
0 · ∇ + η′

0
∂

∂z

)
∇p′

0, (D 2)

where we used ∂v′
0/∂t = −ẑ × v′

0 − ∇p′
0 from the leading-order equations.

pS =
(

ξ ′
0 · ∇ + η′

0
∂

∂z

)
p′

0 (D 3)

and
∂pS

∂x
=
(

ξ ′
0 · ∇ + η′

0
∂

∂z

)
∂p′

0
∂x

+
(
∂ξ ′

0
∂x

· ∇ + ∂η′
0

∂x
∂

∂z

)
p′

0 (D 4)

Taking the dot product of linear momentum equation with ξ ′
0 and fast time averaging, we get:

− v′
0

2 + ξ ′
0 · (ẑ × v′

0) + ξ ′
0 · ∇p′

0 = 0. (D 5)

We further note that

η′
0
∂p′

0
∂z

= η′
0b′

0 = −N2η′
0

2 (D 6)

Using (D 5), (D 6) and (D 3), we get

pS = v′
0

2 + ξ ′
0 · (ẑ × v′

0) − N2η′
0

2, (D 7)

∂

∂x

[
ξ ′

0 · (ẑ × v′
0)
]
= ∂ξ ′

0
∂x

· (ẑ × v′
0) + ξ ′

0 ·
(

ẑ × ∂v′
0

∂x

)
(D 8)

and
∂ξ ′

0
∂x

· (ẑ × v′
0) = ∂ξ ′

0
∂x

·
(

ẑ × ∂ξ ′
0

∂t

)
= −∂

2ξ ′
0

∂t∂x
· (ẑ × ξ ′

0)

= −∂v
′
0

∂x
· (ẑ × ξ ′

0) = ξ ′
0 ·
(

ẑ × ∂v′
0

∂x

)
. (D 9)
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Using (D 9) in (D 8), we get

∂ξ ′
0

∂x
· (ẑ × v′

0) = 1
2
∂

∂x

[
ξ ′

0 · (ẑ × v′
0)
]

. (D 10)

Taking the dot product of linear momentum equation with ∂ξ ′
0/∂x and fast time averaging,

we get

∂ξ ′
0

∂x
· ∂v

′
0

∂t
+ ∂ξ ′

0
∂x

· (ẑ × v′
0) + ∂ξ ′

0
∂x

· ∇p′
0 = 0. (D 11)

The first term in the above equation can be modified as

∂ξ ′
0

∂x
· ∂v

′
0

∂t
= −∂v

′
0

∂x
· v′

0 = − ∂

∂x

(
v′

0
2

2

)
. (D 12)

Further,

∂η′
0

∂x

∂p′
0

∂z
= ∂η′

0
∂x

b′
0 = −N2η′

0
∂η′

0
∂x

= −N2 ∂

∂x

(
η′

0
2

2

)
. (D 13)

Using (D 10) and (D 12) in (D 11), we get

∂ξ ′
0

∂x
· ∇p′

0 = 1
2
∂

∂x

(
v′

0
2

2
− ξ ′

0 · (ẑ × v′
0)

)
. (D 14)

Using (D 13), (D 14) and (D 7), we get

(
∂ξ ′

0
∂x

· ∇ + ∂η′
0

∂x
∂

∂z

)
p′

0 = 1
2
∂pS

∂x
. (D 15)

Using the above equation in (D 4), we get

(
ξ ′

0 · ∇ + η′
0
∂

∂z

)
∂p′

0
∂x

= 1
2
∂pS

∂x
. (D 16)

One can obtain a similar expression with y derivative replacing x derivative above. Combining
these, we get

(
ξ ′

0 · ∇ + η′
0
∂

∂z

)
∇p′

0 = 1
2
∇pS. (D 17)

Using (D 17) and (B 4) in (D 2), we get (B 3a). Further,

(
v′

0 · ∇ + w′
0
∂

∂z

)
b′

0 = −
(

ξ ′
0 · ∇ + η′

0
∂

∂z

)
∂b′

0
∂t

= N2
(

ξ ′
0 · ∇ + η′

0
∂

∂z

)
w′

0 + ∂(N2)
∂z

η′
0w′

0. (D 18)

The final term above vanishes since w′
0 = ∂η′

0/∂t and thus we obtain (B 3b).
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Appendix E. Derivation of equations (C 5) and (C 6)
We use (B 5a) and (B 5b) to obtain

(v1 + vS) · ∇Π0

=
[

ẑ × ∇
(

p1 + pS

2

)]
· ∇Π0 − ∇ ∂p0

∂T
· ∇Π0 − [(v0 · ∇)∇p0] · ∇Π0

=
[

ẑ × ∇
(

p1 + pS

2

)]
· ∇Π0 − [(v0 · ∇)∇p0] · ∇Π0 − ∂

∂T
[∇p0 · ∇Π0] + ∇p0 · ∇ ∂Π0

∂T

=
[

ẑ × ∇
(

p1 + pS

2

)]
· ∇Π0 − [(v0 · ∇)∇p0] · ∇Π0

− ∂

∂T
[∇p0 · ∇Π0] − [∇p0 · ∇](v0 · ∇Π0) + O(ε), (E 1a)

where we used (B 11). We now use the identity

(∇p0 · ∇)(v0 · ∇Π0) + [(v0 · ∇)∇p0] · ∇Π0

=
[

ẑ × ∇
(

(∇p0)2

2

)]
· ∇Π0 + (v0 · ∇)(∇p0 · ∇Π0), (E 2)

in (E 1a) to obtain (C 5). Similarly,

(w1 + wS)
∂Π0

∂z
= − 1

N2

(
∂2p0
∂z∂T

+ v0 · ∇ ∂p0
∂z

)
∂Π0

∂z

= − 1
N2

∂

∂T

(
∂p0
∂z

∂Π0

∂z

)

− 1
N2

[
∂Π0

∂z
v0 · ∇ ∂p0

∂z
+ ∂p0
∂z

∂

∂z
(v0 · ∇Π0)

]
+ O(ε) (E 3)

We now use the identity:

∂Π0

∂z
v0 · ∇ ∂p0

∂z
+ ∂p0
∂z

∂

∂z
(v0 · ∇Π0)

= v0 · ∇
(
∂p0
∂z

∂Π0

∂z

)
+
[

ẑ × ∇
(

1
2

(
∂p0
∂z

)2
)]

· ∇Π0, (E 4)

in (E 3) to get (C 6).
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