Downloaded from https://www.cambridge.org/core. The University of North Carolina Chapel Hill Libraries, on 04 Sep 2020 at 18:31:28, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/jfm.2020.510

J. Fluid Mech. (2020), vol. 902, A7. © The Author(s), 2020. 902 A7-1
Published by Cambridge University Press
doi:10.1017/jfm.2020.510

Turbulent exchanges between near-inertial waves
and balanced flows

Jim Thomas'>+ and Don Daniel?

'Department of Mathematics, University of North Carolina at Chapel Hill,
Chapel Hill, North Carolina 27599, USA

2Los Alamos National Laboratory, New Mexico 87545, USA

(Received 7 January 2020; revised 1 June 2020; accepted 18 June 2020)

Wind generated near-inertial waves are ubiquitous in the upper ocean. An improved
understanding of near-inertial wave dynamics following their excitation in the ocean and
their subsequent interaction with mesoscale geostrophic balanced flows is key to decoding
oceanic energy flow pathways. In this regard, multiple oceanic data sets accumulated over
the past few decades reveal that the relative strength of near-inertial waves and geostrophic
balanced eddy fields is highly variable, both geographically and seasonally. Inspired by
these observations, we investigate turbulent interactions and energy exchanges between
near-inertial waves and balanced flows using freely evolving numerical simulations of
the non-hydrostatic Boussinesq equations. We find accelerated vertical propagation and
dissipation of the waves in regimes where balanced and wave fields have comparable
strengths. In such regimes we also find that near-inertial waves directly extract energy
from balanced flows, with O(10 %) being the amount of balanced energy loss. In contrast,
we find that near-inertial waves transfer energy to balanced flows in regimes where
balance-to-wave energy ratio is small, with the gain in balanced energy being dependent
on the relative strength of waves. Furthermore, these regimes are characterized by
relatively weaker vertical propagation and dissipation of the near-inertial wave field. One
of the key outcomes of this study is the demonstration of the lack of a unique direction
for near-inertial wave-balanced flow energy transfers. Depending on the balance-to-wave
energy ratio, near-inertial waves can act as an energy sink or energy source for the
geostrophic balanced flow.

Key words: wave—turbulence interactions, air/sea interactions, ocean processes

1. Introduction

Wind generated near-inertial waves (NIWs) form one of the two main energy sources for
the internal gravity wave field in the ocean (Alford et al. 2016), gravitationally generated
tides being the second one. Although NIWs are predominantly excited in the upper ocean,
their subsequent vertical propagation and breaking assists in turbulent overturning and
irreversible mixing in the deeper parts of the ocean (Munk & Wunsch 1998; Alford
2003a; Ferrari & Wunsch 2009). Additionally, it is often hypothesized that NIWs could
act as an energy sink for the geostrophic balanced flow. Suggested popular mechanisms for
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the dissipation of balanced energy are balanced flows interacting with bottom boundary
layers (Arbic et al. 2009; Sen, Scott & Arbic 2013), western boundaries (Zhai, Johnson &
Marshall 2010) and topographic features (Hogg et al. 2011; Nikurashin, Vallis & Adcroft
2013). Given that all these mechanisms involve the balanced flow interacting with some
form of boundary, mechanisms that can lead to an energy sink for the balanced flow in
the open ocean, away from all forms of boundaries, continues to be an active research
direction. If NIWs can act as a balanced energy sink — a possibility that still remains a
subject of debate — that would be a potential route for the loss of balanced energy away
from boundaries.

Inspired by the abovementioned and related scientific motivations, a wide range of
works have examined NIW-balanced flow interactions in different configurations. These
include the usage of ray tracing equations and Schrodinger-like amplitude equations to
capture the effects of weak waves on pre-existing frozen-in-time balanced flows (Kunze
1985; Young & Ben Jelloul 1997; Balmforth, Llewellyn Smith & Young 1998; Thomas,
Smith & Biihler 2017; Asselin & Young 2019), two-way coupled NIW-balanced flow
models including both asymptotic (Zeitlin, Reznik & Jelloul 2003; Xie & Vanneste 2015;
Wagner & Young 2016; Rocha, Wagner & Young 2018) and non-asymptotic (Gertz &
Straub 2009; Thomas & Arun 2020) reduced models, studies focusing on NIW-front
interactions (Grisouard & Thomas 2015; Whitt & Thomas 2015; Shakespeare & Hogg
2018; Thomas 2019) and studies examining interactions in the high-Rossby-number
regimes (Taylor & Straub 2016; Barkan, Winters & McWilliams 2017).

On examining oceanic observational data sets that have been collected over the past
few decades, significant geographic and seasonal variability is seen to be associated
with the strength of geostrophic balanced energy (Stammer 1997; Wunsch & Stammer
1998; Wortham & Wunsch 2014) and NIW energy (D’Asaro et al. 1995; Alford 2003b;
Alford & Whitmont 2007; Chaigneau, Pizarro & Rojas 2008; Silverthorne & Toole 2009).
These data sets point out that NIW energy can be comparable or sometimes even exceed
balanced flow energy. In spite of several NIW-balanced flow investigations having been
carried out in different configurations, the wave-balance energy transfer directions and its
dependence on the relative strengths of the NIW field and balanced flow remain unresolved
in the small-Rossby-number regime. Additionally, a clear understanding of the effects the
geostrophic energy level has on the dynamics of NIWs is still lacking.

The abovementioned questions form the primary inspiration for the present work.
We explore turbulent interactions between NIWs and balanced flows in different
balance-to-wave energy regimes using numerical integration of the non-hydrostatic
Boussinesq equations. Throughout this work we take an initial value problem approach,
i.e. we assume that wind excited NIWs with large horizontal scales have been generated
in the upper ocean, on top of pre-existing geostrophic balanced flow. We examine the
subsequent evolution of wave and balanced fields in different regimes by varying the
initial balance-to-wave energy ratio. Using such an initial value problem approach, we
explore the effect of balanced flows of different strengths on the vertical propagation
and dissipation of NIWs, the energy transfers between the two fields and the effect of
increasing wave energy levels on the balanced flow. Based on the results of our numerical
experiments we develop conceptual diagrams illustrating NIW-balanced flow turbulent
interactions and the energy flow pathways between fields and across spatial scales in
different parameter regimes.

The plan for this paper is as follows: we present the governing equations, their
non-dimensionalization, and the wave-balance decomposition in § 2, discuss results based
on numerical experiments and present detailed energy flow pathways in § 3, and conclude
with conceptual diagrams for turbulence phenomenology in different regimes in § 4.
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2. Governing equations

The Boussinesq equations that govern the dynamics of a rotating and stratified fluid are

9 9
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where v = (u, v) is the horizontal velocity, w is the vertical velocity, b is the buoyancy, f
and N are the constant frequencies associated with rotation and stratification of the fluid
and V = X9/0x + y9/dy. We non-dimensionalize (2.1) using the scaling

t—t/f, x— Lpx, z— Hz, v— U, w—>(HU/LD)w,} 22

p— (fULp)p, b — (fULp/H)b.

In the above scaling, the inertial frequency f was used to scale time while the vertical
length scale was chosen as the depth of the domain, H. We chose the horizontal length
scale to be the deformation scale, Lp, = NH/f. Horizontal velocity was scaled using an
arbitrary velocity scale, U, which may be thought of as an estimate for the magnitude of
maximum value of initial flow velocity in our freely evolving simulations. The scale for
vertical velocity, HU/Lp, was chosen to satisfy continuity equation (2.1d). The scale for
pressure was chosen such that the horizontal pressure gradient (Vp) was of the same order
as the Coriolis term (f x v). Finally, the scale for buoyancy was obtained by setting the
vertical pressure gradient (dp/dz) to be of the same order as buoyancy (b).
Scaling (2.1) using (2.2) gives us the non-dimensional equations:

Jv . v
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In the above non-dimensional equations Ro = U /fLp is the Rossby number and o = N/f.
Our study will focus on wave-balance interactions using (2.3) in the regime Ro < 1.
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2.1. The wave-balance decomposition

Setting Ro = 0 in (2.3), we get the linear equations:
v
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8t+a (81 ) (24)
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The linear equations can be used to decompose the fields into internal gravity waves
(denoted with subscript W below) and a part that is in geostrophic balance (denoted with
subscript G below). The wave fields satisfy

vy .
- +2Zx vy + Vpy =0, (2.5a)
oww > [ Opw
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and the balanced flow satisfies
ZX vg+ Vps =0, (2.6a)
0
PG _ o =0, (2.6b)
9z
wg =0, (2.6¢)
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The linear wave-balance decomposition given above provides us with a balanced field
that is exactly in geostrophic balance while linear internal gravity waves form the flow
field that is orthogonal to the balanced field such that the total energy is the sum of these
two quantities, i.e. E = Eg + Ey, where E, Eg and Ey denotes total, balanced and wave
energies, respectively. We will use this orthogonal decomposition to analyse wave-balance
energy exchanges in this work (we refer the reader to appendix A for specific details on
spectral implementation of the decomposition).

3. Results

Our investigation was based on numerical integration of (2.3) in a domain (x, y) €
[0, 27]%, z € [—m, 0] with periodic boundary conditions in the x and y directions and
with rigid lids on the top and bottom, i.e. velocity boundary conditions on top (z = 0)
and bottom (z = —m) were free slip for v and impenetrability for w. The simulations were
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FIGURE 1. Panel (a) shows geostrophic vorticity ¢g at = 4000. The top surface in the figure is
the horizontal plane z = —h, where & = 7t/100. Panel (b) shows the time series of the fractional
change in balanced energy, (Eg(f) — E(0))/Eg(0). Panel (c) shows the horizontal energy spectra
E(kp) of the wave and balanced flow on the horizontal plane z = —h at t = 4000. Finally, panel
(d) shows the vertical energy spectrum of the horizontally averaged energy E (k;) associated with
the wave and balanced flow at r = 4000. The spectral slopes shown above were calculated based
on a best fit in the range k£ = 10-50.

performed using a dealiased pseudospectral code with 3843 grid points. We used a = 20
and Ro = 0.1 for the numerical experiments reported below, although we found that the
qualitative phenomenology and energy transfer directions were similar in neighbouring
regimes. Hyperdissipation terms of the form vA%, v, vAS w and vAS b, where A;p =
0%/9x* + 9%/0y* + 3% /0z%, were added to the right-hand sides of (2.3a), (2.3b) and (2.3¢)
to dissipate energy reaching grid scale and to increase the range of inviscid scales we
resolve. Based on multiple iterative simulations, we set hyperviscosity values ranging from
v = 10"% to v = 1073 for different parameter regimes.

Prior to our wave-balance interaction experiments, we first simulated (2.3) with purely
balanced initial conditions for long enough so as to get a matured turbulent geostrophic
flow field. Specifically, we simulated (2.3) initializing only the geostrophic balanced field
at low wavenumbers, k < 6, with random numbers assigned to each wavenumber. An
example final state of such a balance-only initialized simulation with Es(f =0) =1 is
shown in figure 1(a). Observe the presence of large domain scale vortices. Figure 1(b)
shows the time evolution of balanced energy for this particular simulation. Overall we find
that in this experiment, that lasted several thousand eddy turn over time scales, less than
1 % of the balanced energy was dissipated by final time. Figures 1(c) and 1(d) show the
horizontal and vertical energy spectra of balanced flows and wave fields at the final time.
Although the initial condition was purely in geostrophic balance, weak waves are generated
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as the flow evolves. Nevertheless, these weak waves and other ageostrophic contributions
remain insignificant, as seen in the energy spectra in figures 1(c) and 1(d) showing wave
energy spectrum being several orders of magnitude below balanced flow’s spectrum.

We used simulations such as those described above to get matured turbulent geostrophic
flow fields with energy values of our choice. On top of this balanced flow we added
NIWs with specific energy levels. We initialized NIWs by setting uy = A(z), vy =
ww = by = 0, where A(z) = coexp(—z>/2 h?), ¢y being a constant which was chosen such
that the wave energy Ey had a specific initial value for each experiment and z = —h
is the location where inertial shear, dA/dz, is maximum (for the specific experiments
discussed below, we set 4 = 1t/100). This initial condition, which is homogeneous in
horizontal space to mimic large scales of the wave field, will generate inertial oscillations
as uy + ivy = A(z) exp(—it), wy = by = pyw = 0, which is an exact solution of the
linear wave equations given in (2.5). Furthermore, this horizontally homogeneous inertial
oscillation by itself (i.e. in the absence of a balanced flow) satisfy the full set of nonlinear
equations (2.3) exactly. Therefore, horizontally homogeneous pure inertial oscillations will
retain their state and remain confined to the upper ocean in the absence of a balanced
flow.

We integrated (2.3) with the initial conditions being a combination of NIWs and
balanced flow as discussed above and, based on our exploratory simulations, we will
present three cases in detail and then briefly discuss the changes in neighbouring regimes
at the end of this section. The first regime we will examine corresponds to the case where
wave and balanced energies have comparable strengths. We identify this as the comparable
wave (CW) regime and initialized the flow with Ey = E; =1 so that (Eg/Ew),_, = 1.
The second regime we will focus on was initialized with Ey = 1, E; = Ro* so that
(EG/Ew),_o = Ro® and will be identified as the strong wave (SW) regime in this work.
Finally, for the purposes of comparison, we examine a regime where the balanced flow
was not initialized, i.e. Ey = 1, Eg = 0 resulting in (Eg/Ew),_, = 0 and we identify this
as the only wave (OW) regime.

For the three regimes described above, figures 2(a,c,e) and 2(b,d,f) show the
spatial structure of geostrophic vorticity {; and the waves’ speed Uy = \/uj, + vi,
respectively. Figures 2(a,b), 2(c,d) and 2(e,f) correspond to the CW, SW and OW
regimes, respectively. In the CW regime we found that the balanced vortices continued
to merge and become larger, similar to the phenomenology expected in quasi-geostrophic
turbulence. A snapshot of such a state is shown in figure 2(a). Although NIWs are initially
homogeneous in the horizontal direction and are confined to the upper ocean, the balanced
flow imprints its spatial scales on the wave field. Consequently, the wave field acquires
small scales and propagates vertically. Figure 2(b) shows the spatial structure of the wave
speed at the same time as figure 2(a). Observe that the wave field consists of small scales
and is spread across the whole ocean depth. Therefore, the CW regime is characterized by
waves developing small scales and rapidly propagating in the vertical direction.

When contrasted with the CW regime, we find significant differences in the SW regime
shown in figures 2(c) and 2(d). At early times we observed that the interaction with waves
resulted in breaking up of vortices, generating a wide range of small-scale structures in the
balanced flow. Qualitatively similar turbulence phenomenology characterized by waves
breaking up vortices was seen in the two-dimensional experiments described in Thomas
& Yamada (2019) and Thomas & Arun (2020). In our experiments in the SW regime,
although waves facilitated the generation of small-scale features in the balanced flow,
the small-scale vortices were seen to gradually merge. Such an intermediate state of the
balanced flow is shown in figure 2(c). Note the small-scale structures and the vortices
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FIGURE 2. Physical fields in the three regimes at = 2000. Panels (a,b), (c,d) and (e,f) show
CW, SW and OW regimes, respectively. Panels (a), (c¢) and (e) show geostrophic vorticity while
(D), (d) and (f) show wave speed. In all cases the top surface is the plane z = —h.

showing tendencies to merge. In comparison to the CW regime, the wave field in the SW
regime is relatively less modulated by the balanced flow. As seen in figure 2(d) showing
the spatial structure of waves, the inhomogeneities in the NIW field is much less in this
regime relative to the CW regime, in addition to a weaker vertical propagation of waves.
Finally, figures 2(e) and 2(f) show the OW case. The balanced flow, which was not
initialized in this case, remains zero at all times as can be seen in figure 2(e) showing
geostrophic vorticity. Additionally, the wave field remains as horizontally homogeneous
inertial oscillations with no vertical propagation (figure 2f). As pointed out earlier,
spatially homogeneous inertial oscillations, in the absence of a geostrophic flow, is an
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FIGURE 3. Panel (a) shows the vertical structure of horizontally averaged wave kinetic energy
in the top one-tenth of the domain at = 2000, the same time corresponding to the physical plots
of the wave field shown in figure 2(b,d,f). Panel (b) shows the time evolution of kinetic energy
of inertial oscillations, i.e. the horizontally homogeneous Fourier mode, in all three regimes.

exact solution of the full Boussinesq equations (2.3). We included figures 2(e) and 2(f)
above to demonstrate that the numerical integration retains features of exact solutions
of the Boussinesq equations (apart from a small amount of wave energy being lost to
small-scale viscous dissipation in the OW regime) and to emphasis the stark contrast in
wave and balanced fields seen in figures 2(a)-2(f).

We complement the three-dimensional wave speed plots shown in figures 2(b), 2(d)
and 2(f) with figure 3(a) that shows the vertical structure of horizontally averaged wave
kinetic energy at + = 2000. Note that the wave field in the OW case retains its initial
structure, and remains confined to the upper ocean (as inferred from figure 2f), while the
SW case shows some vertical propagation leading to a decrease in the magnitude of wave
energy in the upper ocean relative to the OW case. On the other hand, the CW case shown
in figure 3(a) is seen to have relatively negligible energy in the upper ocean, concomitant
with the rapid vertical propagation seen in figure 2(b). A further detail associated with
wave energy is given in figure 3(b), which shows the time evolution of wave kinetic energy
contained in the horizontally homogeneous mode &, = 0. Recall that the wave field in all
regimes were initialized as pure inertial oscillations, with energy only in the k;, = 0 mode.
Therefore, figure 3(b) shows how the energy in pure inertial oscillations changes with time.
Note that the OW case shows only a minor drop in energy, this energy drop being due to
viscous dissipation at small vertical scales. The wave field in this case retains its initial
features and remains as horizontally homogeneous inertial oscillations. The SW case on
the other hand is seen to exhibit much more loss in inertial oscillations energy, primarily
due to energy conversion to horizontally inhomogeneous NIWs — a mechanism that is
absent in the OW case. On a relative comparison, most efficient conversion of energy
from pure inertial oscillation mode &, = 0 to inhomogeneous wave modes k;, # 0 is seen in
figure 3(b) to take place in the CW regime.

Our comparison of the CW and SW regimes with the OW regime above highlights
the dominant role the strength of the balanced flow has on NIWs. The OW regime with
(Ec/Ew),—o = 0 is characterized by NIWs retaining their initial features, being confined
to the upper ocean and remaining spatially homogeneous. Except for a small amount of
viscous dissipation, the wave field in the OW regime remains as pure inertial oscillations.
The SW regime with (Eg/Ew),_, = Ro® was seen to have waves becoming horizontally
inhomogeneous and propagating vertically to a certain extent. Finally, the most extreme
effects of balanced flow on waves were seen in the CW regime with (Eg/Ew),_, = 1,
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FIGURE 4. Panel (a) shows the frequency spectra of uy. Dashed horizontal lines in the figure
are added to indicate the inertial peak in the three regimes. Panel (b) shows the waves’ energy
spectra on the plane z = —h, with the solid lines being at = 2000 and the discontinuous lines
being at r = 4000. The spectra remain around kh_l‘6 in the CW regime and k,:4'3 in the SW
regime (calculated based on a best fit in the range k;, = 10-50). The lack of horizontal scales for
waves in the OW regime results in the energy spectrum collapsing to a single point (blue dot) in
this regime.

where the wave field acquired smaller horizontal scales and exhibited significant vertical
propagation to ocean depths. Since all these regimes were initialized with the same
wave energy, their inter-comparison reveals that stronger balanced flow leads to higher
modulation of NIWs.

To further analyse these cases, we examined the frequency and energy spectra of the
wave field in the three regimes at different times. Figure 4(a) shows a typical frequency
spectra of uy on the plane z = —h corresponding to # = 2000. The frequency spectra
were obtained by ensemble averaging the frequency spectra obtained from 20 arbitrarily
chosen spatial locations. Frequency spectrum associated with each specific point in the
domain was computed using a time series of uy in a time interval centred at = 2000.
Observe that the wave field remains purely inertial in the OW regime (blue curve), while
some higher harmonics are generated in the SW regime (notice the frequencies w = 2, 3, 4
seen in the black curve). In contrast, relatively much more broadening of the frequency
spectrum is seen in the CW regime (see the red curve). The excitation of higher harmonics,
vertical propagation and subsequent dissipation (which will be discussed in detail below)
of the wave field is also seen to decrease the energy content in the inertial peak in the
CW case, relative to the SW and OW cases (note that the inertial peak of the red curve in
figure 4(a) is much lower than the blue and black curves). To complement our frequency
spectra analysis, figure 4(b) shows the waves’ energy spectra at = 2000 and ¢ = 4000
on the same plane, z = —h, where the frequency spectra were computed. We find that the
waves’ spectrum is much shallower in the CW regime relative to the SW regime, reflecting
the prominence of small-scale wave features in the CW regime.

Since wave energy decreases due to dissipation at small scales in our freely evolving
experiments (the exact amounts to be quantified below), we observed that the magnitudes
of frequency and energy content seen in figures 4(a) and 4(b) were higher at earlier
times and lower at late times. This can be seen in the energy spectra of the CW and
SW regimes shown in figure 4(b) — note the drop in wave energy at t = 4000 compared
to + = 2000. Consequently, the reader is reminded that figure 4 primarily serves as an
intercomparison between the three regimes. Overall higher energy content at small spatial
scales and at higher harmonics was seen to be associated with the wave field in the CW
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FIGURE 5. Panel (a) shows the time series of R defined in (3.1) to quantify the affinity of NIWs
for anticyclonic vorticity regions. Panel (b) shows the time series of R computed after removing
horizontally homogeneous inertial oscillations from the wave field.

regime, compared to the SW regime. On examining energy spectra of balanced flows
(figures omitted), we found that spectral slopes ranged from k; ° to &, * in both the CW and
SW regimes at early times. As the balanced flow evolved leading to vortex mergers and
large-scale coherent structure formation, we observed that spectral slopes became steeper.
The NIWs are often seen to have an affinity for anticyclonic mesoscale eddies, based
on in situ oceanic observations and large-scale ocean model simulations (Lee & Niiler
1998; Zhai, Greatbatch & Eden 2007; Danioux, Klein & Riviere 2008; Elipot, Lumpkin
& Prieto 2010; Joyce et al. 2013) and explanations for this have been proposed based on
multiple reduced models in the past (see discussions in Kunze 1985; Balmforth er al. 1998;
Danioux, Vanneste & Biihler 2015; Thomas et al. 2017). To examine affinity of NIWs
towards anticyclonic geostrophic fields, we computed the correlation R defined as

R = M (3.1)

(¢c){Ew)

where ¢ is the geostrophic vorticity, Ey is the wave energy and angle brackets denote
spatial integration over the whole domain. Figure 5(a) shows the time series of R; observe
that R is negative in both CW and SW regimes, implying the affinity of NIWs for
anticyclonic vorticity regions. We also note that R attains much lower values in the CW
regime than in the SW regime. This feature is primarily due to the higher amount of
energy retained in pure inertial oscillations in the SW regime when compared with the CW
regime, as seen in figure 3(b). We therefore recomputed R using the wave field obtained
by removing the horizontally homogeneous inertial oscillation mode. In other words, we
subtracted the horizontally homogeneous wave mode from the wave field, and computed
the energy associated with the horizontally inhomogeneous wave field so obtained and
used that to compute R. This modified R is plotted in figure 5(b). Notice that both CW
and SW regimes now show more or less comparable magnitudes for R, indicating that
spatially inhomogeneous NIWs are indeed strongly correlated with anticyclonic regions
of geostrophic vorticity.

We follow up our examination of the spatial fields, energy and frequency spectra
with an estimation of the direction and magnitudes of wave-balance energy exchanges
in the CW and SW regimes (we leave out the OW regime where the balanced flow
remained zero throughout). To examine the wave-balance energy exchanges, we apply
the linear wave-balance decomposition to the governing equations (2.3). This gives us the
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energy evolution equations for balance (G) and wave (W) modes in spectral space as (see
appendix B for more details on deriving spectral energy exchange equations):

dEg(k, 1) A R X )
Ga_t = Teeck, t) + Toww(k, t) + Toow(k, t) — Dg(k, 1), (3.24)
OEw(k, 1) A R . A
= Tk, 0) + Tuw (k.0 + Twga(k, 1) — Dy k. 0. (3.2b)

Above EG(k, t) and EW(k, t) refer to balanced and wave energies, respectively, the
f"(k, t) terms represent different triadic interactions between wave and balanced modes,
and D(k, 1) represent dissipation, all corresponding to a certain wavenumber k =

k2 + k2 + k2. We will first examine the spectral fluxes to identify the directions of energy

flow across scales of wave and balanced modes. We sum the terms in (3.2) from the largest
wavenumber k = k,,,, to an arbitrary wavenumber k = k to get the energy flux equations
in spectral space as

dEo(k. 1) .
Gat - = HGGG(k, t) + HGWW(k, t) =+ HGGW(k, [) —DG(k, t), (3361)
I
DL (k. 1 :
Wat = Myww(k, ) + Mwew(k, ) + Mk, 1) =Dy (k, 1). (3.3b)
Iy

Above EG (k, t) and Ew(k, t) represent balance and wave energies contained in the spectral
band [k, k.4, ]. The triadic terms on the right-hand side of (3.3) gives the respective spectral
fluxes: 1 for the balanced flow and I1y for the waves. Note that the total geostrophic
flux, I1; in (3.3a), has been decomposed into different triadic contributions such as triadic
balanced flow alone (I715¢¢), balance-wave-wave triads (I1gww) and balance-balance-wave
triads (ITggw). Slmllarly, the decomposmon of total wave flux ITy into individual triads is

given in (3.3b). Finally, DG(k t) and DW(k t) in (3.3) indicate balance and wave energy
dissipation within the spectral band [k, k4]

Figures 6(a,c) and 6(b,d) show the spectral fluxes for the CW regime and the SW
regime, respectively, corresponding to a specific time. The fluxes were computed using
(3.3) and time-averaged in the interval = 2000 — § to r = 2000 + § (with § being chosen
to match a few eddy turn over time scales) so as to remove fast-time fluctuations. On
examining the waves’ fluxes shown in figures 6(a) and 6(b), we find that ITy is positive in
both cases with significant contributions from ITyyyw and ITygy. Waves therefore exhibit
a forward energy flux, caused by triadic wave interactions (WWW) and wave-balance
interactions (WGW). We also observe that ITygy has a higher contribution than ITyyw to
the total waves’ flux Ty in the CW regime, while the magnitudes of ITycy and ITyyy are
more or less comparable in the SW regime. The balanced flow therefore plays a major role
in facilitating the forward flux of the waves’ energy, as expected based on our examination
of physical fields in figure 2. On examining the balanced flows’ fluxes in the bottom row of
figure 6, we find that in the CW regime shown in figure 6(c), triadic balanced interactions
make up most of the balanced energy flux, which is negative, i.e. Il ~ I1566 < 0. Other
fluxes being weak, this leads to an inverse energy flux for the balanced flow, resulting in
the formation of larger vortices with time as seen in figure 2(a). On examining balanced
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FIGURE 6. Spectral energy fluxes corresponding to ¢ = 2000 for CW (a,c) and SW (b,d)
calculated based on (3.3).

energy flux in the SW regime shown in figure 6(d), we find that I1g ~ 156 < O at large
scales, although wave induced effects lead to a non-negligible positive flux at small scales;
observe that I1; > 0 for high wavenumbers, while ITgss is negligible at these scales.
Waves therefore facilitate a forward flux and dissipation of a fraction of the balanced
energy in the SW regime (the exact amounts will be quantified below).

We note that spectral fluxes shown in figure 6 correspond to a specific time ¢ = 2000.
Similar to the energy spectra shown in figure 4(b), the absolute magnitudes of spectral
fluxes decreases with time in our freely evolving experiments, although the qualitative
phenomenology described above was observed at all times we checked. Specifically, in
the CW regime balanced flow plays a major role in the forward flux of wave energy,
an effect which is weaker in the SW regime. The balanced flow on the other hand
exhibits an inverse energy flux in both regimes, concomitant with vortex mergers and
large-scale vortex formation seen in physical space. Additionally, waves induce a weak
forward flux leading to the dissipation of a small fraction of balanced energy in the SW
regime.

We next examine the energy budgets of wave and balanced fields with an eye on
the net energy exchange between the two fields. We form the energy transfer equations
by summing the terms in (3.2) from k = k,,,, to k =0 to get the total energy change
associated with each specific term. Additionally, we integrate in time each term thus
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FIGURE 7. Energy transfers in CW (a,c,e) and SW (b,d,f) regimes computed based on (3.4).

obtained from O to 7 to get net energy change equations as

AEG(1) = Eg(t) — Eg(0) = Egww (1) + Egew(t) —Dg(1), (3.4a)
Egiadx

AEw(t) = Ew (1) — Ew(0) = Ewew (1) + Ewge (1) —Dw(1). (3.4b)
E{Ar/iud.r

Since triadic self-interactions between balanced modes and waves cannot transfer net
energy within the G and W modes, GGG and WWW terms do not appear above.
Furthermore, since triadic interactions of a similar kind conserve energy, we have
Ecww(t) + Ewgw(t) =0 and EGgw(t) + Ewg(;(t) =0. Figures 7(61,C,€) and 7(b,d,f) show
the time series of different terms in (3.4) for the CW regime and SW regime, respectively.
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On examining figure 7(a) showing the triads involved in energy exchange in the CW
regime, we find that waves gain energy from the balanced flow primarily via the Eygw
triads, while the balanced flow loses an equal amount of energy via the Egyy triads. The
balanced energy budget given in figure 7(c) based on (3.4a) shows that in addition to
direct energy extraction by waves via the triadic interactions noted above, waves facilitate
dissipation of the balanced flow. By the end of our experiment at = 4000, we find that the
balanced flow loses about 10.4 % of its energy, with 2.4 % being due to dissipation at small
scales and 8 % being direct extraction by waves. Figure 7(e) showing the waves energy
budget based on (3.4b) reveals that although direct extraction of balanced energy increases
wave energy by 8 %, approximately 70 % of wave energy is dissipated at small scales. As a
result, 62 % of wave energy is lost by the end of our simulation. The gradual drop in wave
energy makes balanced energy extraction by waves inefficient as time progresses.

The time series of triads involved in energy exchange in the SW regime, shown in
figure 7(b), exhibit an exact opposite behaviour to that seen in the CW regime discussed
above. We find that waves lose energy to the balanced flow primarily via the Eygw triads,
while the balanced flow gains energy via the equal and opposite Egyyy triads. Since initial
balanced energy was E; = Ro® = 0.01 in this case, we find from figure 7(b) that balanced
energy increases by 12.9 % due to direct transfer by the waves. Although waves transfer
energy to the balanced flow in the SW regime, a fraction of the small-scale features formed
at early times in the balanced flow seen in figure 2(c) reaches dissipative scales leading
to a loss of balanced energy. The balanced flow’s energy budget based on (3.4a) shown
in figure 7(d) reveals this. Observe that approximately 10.8 % of balanced energy gets
dissipated, due to which there is only 2.1 % increase in balanced energy by the end of
the experiment. On examining the waves energy budget given in figure 7(f) we find that
waves have lost 16.5 % of their energy. Since the balanced energy is small in this regime,
the 12.9 % gain in balanced energy due to direct transfer by the waves is only a small loss
of energy for the waves. Consequently, as seen in figure 7(f) , most of the wave energy is
lost to dissipation. On comparing figures 7(e) and 7(f), we find that the waves’ energy loss
in the CW regime is significantly higher than that in the SW regime, in spite of both these
regimes having the same initial wave energy Ey = 1. As clarified with the spectral flux
plots in figure 6, the forward wave energy flux is significantly enhanced by the presence
of a stronger balanced flow. Weak balanced flow in the SW regime leads to lower wave
dissipation.

Recall that we defined the balanced field to be the flow field that is in geostrophic
balance based on (2.6). Nevertheless, high frequency fluctuations can still be present in
the balanced flow, which is especially expected in the SW regime where wave fields are
much stronger than balanced flow. To extract a slow balanced component from the total
balanced flow, we performed a running time averaging operation on the balanced fields as

t+1/2

ug(x,z,t) = (1/7) ug(x, z, s) ds. (3.5)

t—1/2

Figures 8(a) and 8(b) show the frequency spectra of the balanced velocity u¢ before (black
curve) and after (red curve) the fast-time-averaging operation. Observe that time-averaging
removes high frequency fluctuations from the frequency spectrum, providing us a slow
balanced field. We used time-averaged balanced fields — ¢, vg and be —to compute the
slow geostrophic flow energy and compared it with the original unaveraged geostrophic
energy during multiple time intervals. An example comparison for the duration ¢ =
2000-3000 is given in figures 8(c) and 8(d) for the CW and SW cases, with the black
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FIGURE 8. Panels (@) and (b) show the frequency spectra of ug (black curve) and u¢ (red curve)
for the CW and SW regimes. The frequency spectra were computed using time series of velocity
stored from ¢t = 2000-3000. Panels (c) and (d) show the total balanced energy (black curves) and
slow balanced energy (red curves), computed based on the slow balanced fields: iig, v and bg.
Note that the black curves in panels (¢) and (d) above are a small part of the black curves seen in
figures 7(c) and 7(d), respectively.

curve showing the evolution of the full balanced energy (i.e. a part of the black curves
shown in figures 7¢ and 7d) and the red curves showing the evolution of the slow balanced
energy. As seen in figures 8(c) and 8(d), the slow balanced flow’s energy captures the
changes in the total balanced flow’s energy very well. This comparison between slow
balanced flow’s and unaveraged balanced flow’s energy illustrate that the changes in the
balanced energy seen in figures 7(c) and 7(d) corresponds to changes in the slow-evolving
geostrophic balanced flow’s energy. Although fast fluctuations are inherently present in
the geostrophic flow, especially in the SW regime, their effects are weak and therefore
insignificant.

3.1. Wave kinetic and potential energy budgets

The results of our numerical experiments described above point out that in the Ro < 1
regime NIWs can act as an energy sink for the balanced flow when wave and balanced
flow energies are comparable, whereas NIWs act as an energy source for the balanced
flow in regimes where wave energy exceeds balanced energy. We will now examine more
specific details of the wave energy budget so as to check some of the hypothesis used in
developing coupled NIW-balanced flow asymptotic models in recent times, described in
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Xie & Vanneste (2015), Wagner & Young (2016) and Rocha et al. (2018), which we refer
to as XV, WY and RWY, respectively, hereafter in this section.

Young & Ben Jelloul (1997) derived an approximate Schrodinger-like amplitude
equation for the evolution of NIWs. A distinct feature of this approximate asymptotic
model is that NIWs conserve their kinetic energy. Xie & Vanneste (2015) coupled this
reduced wave model with an asymptotic equation for the evolution of a Lagrangian
averaged balanced flow in a regime where wave energy is asymptotically higher than
balanced flow energy, i.e. the same regime we identify as SW in this paper. Wagner &
Young (2016) extended XV’s model to include a weak second inertial harmonic wave
field while RWY truncated NIWs in XV’s model to a plane wave and examined its
interactions with a barotropic flow using two-dimensional simulations. A horizontally
homogeneous wave field with zero potential energy, such as our wave field in the present
study, will acquire spatial scales from the mean flow and thereby increase its potential
energy. Since the kinetic energy of NIWs is conserved in their asymptotic models, total
energy conservation of the coupled model demands that the increase in wave potential
energy should correspond to a decrease in the balanced flows energy. Consequently, XV,
WY and RWY conclude that NIW-balanced flow interactions can result in an energy sink
for the balanced flow in the SW regime.

Before we dwell into a detailed examination of energy budgets of our experiments,
we point out two noteworthy differences between our set-up and that of the asymptotic
models refereed to above. The first difference is in the way we scaled the governing
equations. Recall that our experiments are based on the weakly nonlinear dynamics of
(2.3) in the regime Ro < 1. In our non-dimensionalization, as explained below (2.2), the
velocity scale U may be thought of as an estimate for the largest velocity value prescribed
initially. In the CW regime initialized with E; = Ey or, equivalently, Us ~ Uy, this
means that the velocity scale appearing in Ro may be identified with the wave or balanced
field, i.e. Ro ~ Ro,ue = Uw/fL ~ Ug/fL = ROpyiuncea- In contrast, we initialized our SW
regime as E; = Ro®> Ey, leading to U; ~ Ro Uy. Therefore, in the SW regime we have
Ro ~ Roppe = UW/fL and Ropatancea = UG/fL =Ro UW/fL ~ ROZ' Consequently, if we
defined the Rossby number based on the balanced velocity in the SW regime, it would
be Ro* and not Ro. In the asymptotic models noted above they define the Rossby number
based on the balanced velocity field. Therefore, the Rossby number in the asymptotic
models is given by Rousympioic = Ro? and the asymptotic expansions they use to derive
approximate reduced models are based on the small parameter € = /R0usymproric = RoO.

The second key difference between our set-up and that of reduced asymptotic models
is in the way wave-balance decomposition is defined. Our wave-balance decomposition
is based on the linear equations (2.4), where the wave field consists of linear waves
evolving based on (2.5). As confirmed by our detailed examination of the waves’
frequency spectra, with figure 4(a) showing a specific snapshot, the wave field remains
near-inertial throughout the dynamics. The balanced flow on the other hand is the
Eulerian field in geostrophic balance given by (2.6). This decomposition is orthogonal
(see details given in appendices A and B) such that the total energy is the exact sum
of wave and balanced energies. Contrary to our Eulerian wave-balance decomposition,
the asymptotic models of XV, WY and RWY use an approximate Lagrangian balanced
flow derived based on asymptotic analysis, this being the balanced flow that is
coupled with linear NIWs. This crucial difference in defining balanced flow makes a
straightforward comparison between our results and the results of the asymptotic models
challenging.
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In spite of the challenge noted above, we remind the reader that our numerical
experiments are based on the Boussinesq equations, equations that conserve total energy
in the absence of dissipative effects; the total energy being the sum of wave and balance
energies as noted below (2.5) and (2.6). Furthermore, the asymptotic models noted above
are derived starting form the Boussinesq equations as their parent model. Additionally, the
asymptotic models conserve the sum of linear wave and Lagrangian balanced energy, in
the absence of dissipative effects. Therefore, if the results of the asymptotic models agree
with the results of Boussinesq equations then, since the wave field is linear in both cases,
the wave energy budget should be similar within Boussinesq equations and the asymptotic
models. In other words, if waves gain energy in the asymptotic models, the same must be
observed in the results that follow from the Boussinesq equations, and vice versa. To check
these aspects in greater detail than that provided in figure 7, we will now take a closer look
at the wave energy budget within our experiments.

Along the same lines as the development of the total wave energy change equation
(3.4b), we may write the kinetic and potential energy change equations of waves as (see
appendix B for specific details on the derivation of these equations)

AEY (1) = Eff (1) — EfF(0)
= EN' P50 + Ejn (D) + En (D) + Exo() =D (1), (3.6a)

12540)

AEPE(r) = ENE () — EPE(0)
= Ey ™ (1) + Egyyy () + Exiguy (1) + Eyjo (1) =Dy (1) (3.6)

Epei (1)

In the above equations AERF and AE}F correspond to changes in the waves’ kinetic
and potential energies, respectively, from initial time while the right-hand sides of the
equations above give the different terms that lead to the changes. The term Ef“<"®
that appears in the kinetic energy equation (3.6a) is the wave kinetic-to-potential energy
conversion term and is equal and opposite to term E5*<XE that appears in the potential
energy equation (3.6b). Specifically,

=t
EXE©PE _ / (bywy) dt = —EPEKE, (3.7)
=0

where the angle brackets above, as in (3.1), represent integration over the whole domain.
The above kinetic-to-potential conversion term straightforwardly appears on writing down
the waves’ energy budget from the linear wave equations given in (2.5).

The EXE ... EXE.. ESE . terms in the kinetic energy equation (3.6a) and the Ef5,.
Ef%.. EwGe terms in the potential energy equation (3.6b) refer to changes in wave
kinetic and potential energies due to different kinds of triadic interactions. Finally,
DEF and Dyf represent dissipation of wave kinetic and potential energies, respectively.
Note that the wave kinetic and potential energy equations given above are basically
a break up of the waves’ total energy budget given in (3.4b), i.e. we recover (3.4b)
on summing up the kinetic and potential energy equations in (3.6). Consequently, we
have the identities: Efey + Enmyw = 0, ENcw + Evew = Ewow. EbNge + Efee = Ewee
and DY + DYF = Dy,.

For convenience in examining wave kinetic and potential energy budgets below, we
combine the changes due to kinetic—potential conversion and triadic terms as EXE in the

net
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FIGURE 9. Wave kinetic and potential energy transfers: SW (a) and CW (D).

kinetic energy budget (3.6a) and E'Z in the potential energy budget (3.6b). Note that
since the kinetic—potential energy conversion terms are equal and opposite in sign, we
have the identity EXE + EPE = Elriads | Elriads being the sum of all triads that appears in
the waves’ energy budget given in (3.4b). Figures 9(a) and 9(b) show the time series of
EXEEPE and Ejj** with the SW regime and CW regime, respectively. We excluded the
waves’ small-scale dissipation in figure 9, which was already discussed in connection with
figures 7(e) and 7(f).

In the SW regime shown in figure 9(a), we find that the waves’ kinetic energy
contribution (black curve) decreases more than the increase in the waves’ potential energy
contribution (blue curve), resulting in a net decrease in wave energy, as shown by the red
curve (this being the same red curve that appears in figure 7(f), although it appears as a
straight line there due to the small magnitude of change). Above observations point out
that the changes in wave kinetic energy is by no means negligible when compared with
the changes in wave potential energy. A key constraint in the asymptotic formulations of
XV, WY and RWY is that wave kinetic energy is conserved in time while wave potential
energy increases due to interactions with the balanced flow. Since these models are set
in a regime where wave energy dominates over balanced flow, i.e. our SW regime, one
might have anticipated NIW kinetic energy to be ‘almost conserved’ or at least to change
by an amount that is significantly less than the change in NIW potential energy. However,
as seen in figure 9(a), the magnitude of changes in NIW kinetic and potential energies are
of the same order, with the magnitude of the kinetic energy drop exceeding the increase in
potential energy, leading to waves losing energy to the balanced flow.

Recently Thomas & Arun (2020) examined NIW-balanced flow interactions in a
two-vertical-mode model. As described in detail there, their two-vertical-mode model
can be used as a starting point for deriving coupled two-dimensional NIW-balanced flow
models such as those used in XV and RWY. Although NIWs extracting energy from the
balanced flow was anticipated in that set-up as well, Thomas & Arun found that in the SW
regime the magnitude of decrease in NIW kinetic energy exceeded the increase in NIW
potential energy, resulting in a net drop in NIW energy (see discussions in § IV of Thomas
& Arun 2020 with regards to their figures 6a and 12a), similar to our findings given in
figure 9(a). The results from the two-dimensional work of Thomas & Arun (2020) and
our findings described in this paper point out that NIWs should in general be expected to
transfer energy to balanced flows in wave-dominant regimes.

In spite of the asymptotic models of XV, WY and RWY being based in the SW regime

where NIW energy exceeds balanced energy, we will now examine the wave energy budget
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EXp. Regime Ro Ec;(()) Ew(()) EG(O)/Ew(O) AEG AEW

1 CW 01 1 1 1 —-104% —62%
2 CW 01 2 2 1 —15% —80%
3 CW 01 05 0.5 1 —8% —56%
4 SW 01 Ro? 1 Ro? 21% —16.5%
5 SW 01 2Ro? 2 Ro? 13% —57%
6 SW 01 0.5R0*> 0.5 Ro? 0.8% —8%

TABLE 1. Summary of net energy changes in the geostrophic balanced flow and NIW field
based on numerical experiments. All simulations were performed up to r = 4000.

in the CW regime. In the CW regime shown in figure 9(b) we find that the wave potential
energy contribution (blue curve) increases more than the decrease in the wave kinetic
energy contribution (black curve) resulting in a net increase in the wave energy indicated
by the red curve (this being the same red curve that appears in figure 7¢). In this regime,
although the increase in wave potential energy exceeds the magnitude of decrease in wave
kinetic energy, the magnitude of their changes are of the same order. Note that the increase
in wave potential energy is not more than three times the magnitude of decrease in wave
kinetic energy. Additionally, on short time scales, such as t < 500 where the asymptotic
models are expected to work better, the changes in wave kinetic and potential energies are
quite close in magnitude.

Based on our examination of wave kinetic and potential energy budgets, we conclude
that the simple mechanism by which NIWs extract balanced energy, suggested by the
asymptotic models, are not seen in our numerical simulation results. In the specific CW
and SW regimes presented in detail in figure 9 and in many other cases we examined on
an exploratory parameter sweep summarized in table 1 (see § 3.2 below), we consistently
found that NIW Kkinetic energy changed by magnitudes comparable to changes in NIW
potential energy, invalidating the key conservation law in the asymptotic models of XV,
WY and RWY. As mentioned earlier, although the balanced flow is different in our
set-up and theirs, the wave field is linear. Therefore, a key result that follows from our
detailed examination of the wave energy budget is the significant change in NIW kinetic
energy, contrary to the assumption of conservation of NIW Kkinetic energy based on
the Young & Ben Jelloul (1997) model. Our findings reveal shortcomings of existing
NIW-balanced flow coupled asymptotic models and emphasize the need to improve
them. Recent work by Asselin & Young (2019) suggest that higher-order corrections
can be incorporated to the wave evolution equation, thereby modifying the energetics
of coupled asymptotic models (see speculations detailed in their § 3.2). This could be
a potential avenue for further exploration so as to develop improved asymptotic models
whose predictions align with energy transfer pathways predicted by the Boussinesq
equations.

3.2. Energetics in neighbouring regimes

Based on our exploratory numerical experiments, the abovementioned phenomenology
and energy transfer directions were observed in other parameter regimes as well, except
for quantitative changes. We will now examine the quantitative changes observed in
neighbouring regimes. When we set Eg = Eyy = 1 in the CW regime, we found that
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10.4 % of the balanced energy and 62 % of the wave energy were lost by final time, as
summarized in table 1 corresponding to experiment 1 (also recall left column of figure 7).
On doubling the initial wave and balanced energies to E; = Ey = 2, we found that the
balanced energy dropped by 15 % while the wave energy dropped by 80 %. On the other
hand, decreasing the initial wave and balanced energies to Eg; = Ey = 0.5 resulted in
an 8 % drop in balanced energy and 56 % drop in wave energy. The results of these
two experiments, given in table 1 as experiments 2 and 3, are as expected. Increasing
the flow energy increases the magnitudes of wave and balanced fields in the governing
equations (2.3), thereby accelerating the rate of turbulent exchanges between the fields,
while the opposite scenario takes place on decreasing the flow energy resulting in weaker
interactions. Consequently, by a fixed final time (¢ = 4000) we find more energy loss in
the wave and balanced flow fields for the higher flow energy case and vice versa for
the lower flow energy case. Overall we find O(10 %) loss of balanced energy in CW
regimes.

On examining the SW regime, we found that the balanced energy increased by 2.1 %
while the wave energy dropped by 16.5 % in the case we discussed in detail (recall figure
7b,d.f), this case being summarized as experiment 4 in table 1. On increasing the initial
wave and balanced energies to Ey = 2, Eg = 2Ro” (experiment 5 in table 1), we found
that the balanced energy increased by 13 % while the wave energy dropped by 57 %. In
contrast, decreasing the initial wave and balanced energies to Ey = 0.5, Eg = 0.5R0®
(experiment 6 in table 1), we found much less increase in the balanced energy (0.8 %) and a
decrease in the wave energy (8 %). As in the CW regime discussed above, increasing wave
and balanced energies increases the interaction rate in (2.3), resulting in higher magnitudes
of changes in wave and balanced energies. On the other hand, the opposite effect is seen
on decreasing wave and balanced energies.

For consistency, we kept Ro fixed at 0.1 for the experiments summarized in table 1. On
changing Ro in (2.3) we found a behaviour similar in effect to that of changing wave and
balanced energies. Specifically, increasing Ro was seen to speed up interactions resulting
in higher magnitudes of changes in wave and balanced energies. The opposite effect was
observed when Ro was decreased, resulting in lower magnitudes of changes in wave and
balanced fields by the end of the experiment.

Based on a broad set of exploratory simulations (from which a subset of quantitative
results are summarized in table 1), irrespective of specific magnitudes of energy transfer,
overall we found that waves were efficient in extracting balanced energy in CW regimes
with Eg ~ Ey, while waves fed the balanced flow in SW regimes with E; ~ Ro*Ey.
We focused on specific SW regimes with E;/Ey ~ Ro? in the high wave energy limit,
since this distinguished limit has received considerable attention with regards to multiple
asymptotic models as discussed earlier. Nevertheless, waves were seen to feed the balanced
flow in regimes where balanced energy was less than that in the SW regime, i.e. in regimes
where E; < Ro’Ey. On the other extreme end, when wave energy was asymptotically
weaker than balanced energy with Ey < Eg, we observed almost no changes in balanced
energy. Finally, in intermediate regimes where balanced energy was lower than that in the
CW regime but higher than that in the SW regime, such as E;/Ey = Ro for example, we
observed that balanced flow gained energy from waves for a certain duration, after which
they slowly started losing energy to waves. Due to this gradual change in energy transfer
direction, effectively after a significant duration, balanced flow was seen to lose a small
fraction of its energy.
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4. Summary

Wind generated NIWs are ubiquitous in the upper ocean and form an important
energy source for oceanic internal gravity waves. The interaction of these waves with
balanced flows can result in wave modulations, facilitating their vertical propagation,
thereby leading to turbulent mixing and dissipation in the interior parts of the ocean.
Additionally, NIWs are often hypothesized to be a potential agent that can form an
energy sink for balanced energy. These and related questions have triggered many
studies on NIW-balanced flow interactions. The present work was inspired by the
recognition of high variability in the balance-to-wave energy ratio in the ocean, as a
function of geographic location and seasons of the year. We therefore explored turbulent
energy exchanges between NIWs and balanced flows in different balance-to-wave energy
regimes.

Our investigation was based on freely evolving numerical integrations of the
non-hydrostatic Boussinesq equations in the small-Rossby-number regime. We generated
multiple turbulent geostrophic balanced flow fields with energy levels of our choice and
initialized horizontally homogeneous inertial oscillations on top of the balanced flow.
The three cases we discussed in great detail — CW, SW and OW — were initialized
with (Eg/Ew),_o = 1, (Eg/Ew),_y = Ro* and (Eg/Ew),_, = 0, respectively, Ro being
the Rossby number. All cases had the same initial wave energy, the regimes being
differentiated with varying balanced energy levels.

On examining the dynamics of different regimes, the wave field was seen to remain as
pure inertial oscillations trapped in the upper ocean in the OW regime, where no balanced
flow was initialized. The SW regime with weak balanced flow was characterized by the
waves becoming horizontally inhomogeneous and propagating vertically to some extent.
On the other hand, the wave field in the CW regime was seen to develop much smaller
horizontal scales and rapidly propagate to the interior parts of the ocean. In addition to
the rapid vertical propagation and small-scale formation, the CW regime was seen to have
much higher wave dissipation than the SW regime, this being facilitated by the balanced
flow. The inter-comparison between the three regimes with fixed initial wave energies
but varying balanced energies highlights that vertical propagation, forward energy flux
and subsequent small-scale dissipation of NIWs can be accelerated by the presence of a
stronger balanced flow.

A summary of the turbulent energy transfer pathways in different regimes based on our
study is shown as schematics in figures 10(a) and 10(b) for the CW and SW regimes,
respectively. The NIWs exhibit a forward energy flux in both regimes, as shown by the
red rightward pointing arrows in the red boxes representing NIWs. Notice that the red
arrows are longer in the CW regime than in the SW regime, indicating a relatively rapid
forward energy flux and dissipation of NIWs in CW regimes associated with a stronger
balanced flow. The geostrophic flow exhibits an inverse energy flux in both regimes,
indicated by black left-going arrows in the black bottom boxes representing geostrophic
flow. Additionally, in the SW regime waves facilitate a weak forward flux of geostrophic
energy, which is indicated by the small reddish brown rightward pointing arrows in the
geostrophic flow’s box in figure 10(b). Finally, the blue arrows between the wave and
balanced flow’s boxes indicate energy transfer between the two fields. Net energy transfer
is from the balanced flow to waves in CW regimes and vice versa in SW regimes.

In addition to the significant effect balanced flow strength has on the modulation of
NIWs, a key outcome of this study is the variability in the direction of energy transfer
between NIWs and balanced flow in different parameter regimes. The NIWs extract energy
from geostrophic balanced flows in CW regimes where balanced and wave energy levels
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FIGURE 10. Schematics showing energy transfer pathways in (@) CW and (b) SW regimes.
The top red boxes represents NIWs while the black bottom boxes represents the geostrophic
balanced flow. Within wave and balanced modes, the wavenumber increases from left to right,
as represented by the long blue rightward pointing arrows at the bottom of panels (@) and (b). In
both regimes the geostrophic balanced flow undergoes inverse energy flux, as indicated by the
leftward pointing black arrows in the G-boxes. Additionally, waves in the SW regime facilitate
a weak forward flux of geostrophic energy, as indicated by the small reddish brown rightward
pointing arrows in the G-box. In both regimes NIWs exhibit a forward energy flux, as indicated
by the rightward pointing red arrows in the W-boxes. The forward flux of wave energy is stronger
in the CW regime, which is why the red arrows are longer in the CW waves’ box relative
to the SW waves’ box. Finally, in the CW regime NIWs extract energy from the balanced
flow, as shown by the upward pointing blue arrows in panel (a) while NIWs transfer energy
to the balanced flow in the SW regime, as indicated by the downward pointing blue arrows in
panel (b).

are of the same order, while NIWs transfer energy to balanced flows in SW regimes where
wave energy exceeds balanced energy. Our results therefore point out that depending on the
relative strengths of wave and balanced energy levels in the ocean, geostrophic balanced
flow may lose or gain energy from NIWs. In other words, NIWs need not always act as an
energy sink for balanced energy, contrary to popular notions generically trying to portray
NIWSs as a potential energy sink for mesoscale geostrophic balanced flow in the global
ocean.
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Appendix A. Implementing the wave-balance decomposition

The wave-balance decomposition we used is based on the linear Boussinesq equations
and are given in (2.5) and (2.6). Here we will describe how the decomposition is carried
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out in spectral space. We expand the wave field in Fourier modes as

[uw, vw, pw] = [aw k), Dw (k). pw (k)] cos(k.2) exp(itk,x + kyy — 1)), (A la)
k

s bl = D [w (), b ()| sin(k.2) explithex + kyy = @), (A 1)
k

where w = :i:ot\/ (ki + k2)/(k; + «?k2) is the linear internal gravity wave dispersion
relationship in non-dimensional form. In dimensional form this is equivalent to
Odimensional = j:\/ (N?k; + f?k2)/ (ki + k2). Similarly, we expand the balanced field in
Fourier modes as

[MG7 UG,PG] = Z [i‘G(k)’ ﬁG(")?lA’G(k)] cos(k.z) exp(i(kx + kyy)), (A2a)
k
wes bal = Y [Wa(k), bath) | sin(k:2) explitkex + k). (A2D)
k

In the above expansions we used cosine and sine series in the vertical direction since
our domain consists of impenetrable rigid lids on top and bottom ends. In triply periodic
domains one would use the full Fourier series in z, as can be seen in several previous works
such as Bartello (1995), Embid & Majda (1998), Smith & Waleffe (2002), Majda (2002),
Deusebio, Vallgren & Lindborg (2013), Hernandez-Duenas, Smith & Stechmann (2014),
Herbert et al. (2016) and Waite (2017) for example.

Substituting (A 1) in (2.5), (A 2) in (2.6) and simplifying gives us

. AT
b (k. 1) = [aw, D, W, bw] = aw (1) [(k, + ik,)k., (k, — ik,)k., —iok2, —2]"
= aw(DYw(k), (A3a)

AT
balk. ) = [iic. b6, . be | = ao (0 [=iky. ik, 0, —k]" = ac¥s(k),  (A3D)

where ay and ag are the amplitudes of wave and balanced flow for each wavenumber.
It is easy to see in the above expressions that the wave and balance vectors above are
orthogonal, i.e. ¥ (k) « ¥w (k) = ¥}, (k) - Yg(k) = 0. Above expressions for the spectral
fields of wave and balanced flow applies to wavenumbers &, 7 0. For the special case of
the horizontally homogeneous mode, k; = 0, there is no geostrophic mode and the wave
field is pure inertial oscillation. For the k;, = 0 mode, the expansion (A 1) still holds with
w==£1and

AT
dw () = [aw, By Vo, bw] = [1,1,0, 0" ao(s). (A4)

The total wave field is then the sum of horizontally homogeneous inertial oscillations
(kp = 0 mode) and inhomogeneous wave modes (k, #0). The sum of wave and
balanced fields gives the total flow fields. We will now describe how the wave-balance
decomposition is performed in spectral space.

As pointed out above, the combination of (A3) and (A4) gives us the spectral
wave-balance decomposition. Any solution of the Boussinesq equations in spectral space
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can be expressed as a linear combination of the orthogonal vectors ¥y (k) and ¥g(k) as

AT
(ks DV Br) - = (k. 1) = @ () + ag G ). (A5)

Consider first modes k;, #= 0. For these modes, each wavenumber consists of balanced and
wave modes. The constants ay and a¢ in (A 5) can be determined by taking the dot product
of (A'5) with ¥}, and ¥ . This gives (taking advantage of the orthogonal property of the
vectors noted above)

_ Y5k) - 9(k) _ Yk - k)

- : = WO A6ab
Vi) ye) T Ynk) - Yk (A.6a,5)

ag

for the modes k;, #=0. Since the k, = 0 mode has no balanced component, this mode is
purely a wave mode — inertial oscillations. Once the wave and balanced fields are obtained
in spectral space following the spectral decomposition above, three-dimensional inverse
Fourier transformation gives us the wave and balanced fields in physical space as

(u, v, w, b) = (uw, vw, ww, by) + (ug, vg, wg, bg), (A7)

with the wave and balanced fields obtained by the decomposition satisfying (2.5) and (2.6)
exactly.

Appendix B. Derivation of wave-balance energy exchange equations

Taking the three-dimensional Fourier transform of (2.3) and projecting the equations on
to the wave and balanced fields based on the above procedure gives us

dw (K,
¢u:3(t 1) + Ly (¢w(k, 1)) + NLy (pw(k, 1), ¢k, 1)) = 0, (B 1a)
de (K,

¢Ga(t D Ls(@6(k, 1)) + NLG(@w(k, 1), ¢k, 1)) = 0, (B 1b)

where ¢g(k, t) is as given in (A 3b) while ¢y (k, 1) is the combination of (A 3a) and (A 4).

Obtaining separate evolution equations for the wave and balanced field — as given in
(B 1a) and (B 1b) — is the achievement of applying the wave-balance decomposition to
the governing equations. The Ly (¢ (k, 1)) and Ls(ds(k, 1)) terms above are the linear
terms in the equations and NLy (¢w (k, 1), ¢ (k, 1)) and NL;(dw (k, 1), ¢ (k, 1)) being the
nonlinear terms in the equations. In the absence of the nonlinear terms solving the above
equations will give us linear waves with specific frequencies at each wavenumber (based
on the dispersion relationship) and geostrophic flow that does not evolve at the linear
level. Additionally, at the linear level waves and balanced flow separately conserve their
energy. The nonlinear interaction terms above couple the two fields and allow exchange
of energy. A detailed discussion of the eigenvalue decomposition can be found in Majda
(2002) (especially see chapter 8 there).

We will now describe the steps to obtain the energy equations for wave and balanced
flow. Multiplying the &y equation in (B la) with &}, and adding the complex conjugate of
the equation so obtained with itself gives us an evolution equation for |ity|?. Similarly from
the Dy, Wiy and by equations in (B 1a) we obtain evolution equations for |dy|?, |[Ww|* and

|lA7W |>. Summing up these equations leads to the wave energy evolution equation in spectral
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space, (3.2b). Similar manipulations with the balanced flow’s equation (B 1b) gives us the
balanced energy evolution equation in spectral space, (3.2a).

Following the above procedure, from the ity and vy equations in (B la) we obtain
the wave kinetic energy equation in spectral space. Summing the spectral wave kinetic
equation over all wavenumbers gives us an evolution equation for the net wave kinetic
energy. Integrating the net wave kinetic energy equation in time from ¢ = 0 to # = ¢ gives

us the wave kinetic energy equation (3.6a). Along the same lines, manipulating the by
equation in (B 1a) gives us the wave potential energy equation (3.6b).
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