
1.  Introduction
Fluid flow in the ocean spans nine decades of spatial scales, from O (1,000 km) basin scales to O (mm) viscous 
Kolmogorov scales where the flow kinetic energy is dissipated. Although the earliest studies on oceanic fluid flow 
were primarily focused on the quasi-steady basin scale flow, closely followed by investigations aimed at under-
standing mesoscale ocean dynamics (Richardson, 2008; Warren & Wunsch, 1981; Wunsch & Ferrari, 2018), 
developments in the past few decades have been geared toward decoding submesoscale dynamics with horizontal 
scales of the order of 10 km and smaller (McWilliams, 2016). In this regard, a persistent feature seen in situ 
observations, satellite altimeter datasets, and state-of-the-art global scale ocean model outputs of the past decade 
is an increase in gravity wave-to-balance energy ratio as one moves from meso- to submesoscales. Submesos-
cales are seen to have much higher wave energy levels than mesoscales, with wave energy being one-to-two 
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orders of magnitude higher than balanced energy in multiple oceanographic regions (Bühler et al., 2014; Lien 
& Sanford, 2019; Qiu et al., 2017, 2018; Richman et al., 2012; Rocha et al., 2016; Savage et al., 2017; Tchilibou 
et al., 2018; Torres et al., 2018). Therefore on moving from meso- to submesoscales, one sees a transition from 
quasi-geostrophic turbulence dominated by the dynamics of the geostrophic balanced flow to a turbulence regime 
dominated by inertia-gravity waves.

Recent investigations, using two-dimensional and three-dimensional models (Thomas & Arun, 2020; Thomas 
& Daniel, 2020, 2021; Thomas & Yamada, 2019), aimed at developing a phenomenological understanding of 
a broad set of wave-dominated turbulent regimes indicate that the flow dynamics is significantly different in 
quasi-geostrophic turbulence and wave-dominated turbulence. Although specific details, such as the direction 
and magnitude of wave-balance energy transfers for example, depend on the kind of wave field (see table 2 in 
Thomas & Daniel, 2021), these studies point out that inertia-gravity waves can break up large-scale coherent 
vortices, thereby generating energetic small-scale structures. The two-dimensional models used by Thomas and 
Yamada (2019) and Thomas and Arun (2020) are models that are obtained by projecting the primitive equations 
onto the barotropic and a single baroclinic mode. In the absence of inertia-gravity waves these models reduce 
to two-mode quasi-geostrophic equations. In contrast, by retaining waves, these models access regimes that are 
inaccessible to balanced models generating quasi-geostrophic turbulence. Importantly, these reduced models 
capture the key features of generic wave-dominated turbulent regimes: waves breaking up coherent vortices and 
generating flows that have energetic small-scale structures.

In this paper, we compare and contrast between passive tracer dispersion by barotropic flows in quasi-geostrophic 
and wave-dominated turbulent regimes using the two-vertical-mode model used by Thomas and Yamada (2019), 
hereafter referred to as TY. Our work is inspired by oceanic observations that examine tracer stirring at submesos-
cales (Callies & Ferrari,  2013; Cole et  al.,  2010; Cole & Rudnick,  2012; Ferrari & Rudnick,  2000; Klymak 
et al., 2015; Kunze et al., 2015; Spiro Jaeger et al., 2020). These observations point toward a paradigm where 
submesoscale flows enhance tracer dispersion, with tracers being stirred much more efficiently than that one 
would anticipate based on quasi-geostrophic turbulence phenomenology. Given the broad set of physical 
processes that can generate submesoscale flows, the emerging datasets calls for dedicated process studies to 
examine how energetic submesoscales – generated by different mechanisms – will affect tracer dispersion. In this 
work we explore one such possibility using an idealized model: the presence of high energy inertia-gravity waves 
affecting tracer dispersion.

Since oceanic flows, and geophysical flows in general, are composed of multiple intertwined complex physical 
processes, several past works have tried isolating and studying the role of specific physical mechanisms that 
affect tracer dispersion and contribute toward turbulent diffusivity of flows. These include: using resonant wave 
interaction theory to compute the diffusivity generated by weakly nonlinear waves in the absence of the vortical 
mode (Benilov & Wolanski, 1992; Buhler & Holmes-Cerfon, 2009; Holmes-Cerfon et al., 2011; Sanderson & 
Okubo, 1988), numerically exploring tracer dispersion by the vortical mode in the absence of internal waves 
(Klein et al., 1998; Scott, 2006; Smith & Ferrari, 2009), numerical investigations of tracer dispersion by nonlinear 
breaking waves (Lelong & Sundermeyer, 2005; Lindzen, 1981; Randel & Garcia, 1994; M. A. Sundermeyer & 
Lelong, 2005), and the usage of analytically tractable Greens function approach to compute effective diffusivity 
of turbulent geophysical flows (Galperin & Sukoriansky, 2020; Sukoriansky et  al.,  2009). The present paper 
belongs to a similar category of idealized investigations, with the exception that we compare and contrast passive 
tracer dispersion by barotropic flows in wave-dominated regime with quasi-geostrophic regime using the reduced 
model of TY, thereby developing an understanding of how the key features of tracer dispersion differs in the two 
distinct regimes.

The plan for the paper is as follows: we describe the model and the set up in Section 2, forced-dissipative tracer 
experiments in Section 3, and freely evolving localized tracer experiments in Section 4, and summarize our study 
in Section 5.

2.  Barotropic Flow Fields in QG and SW Regimes
The tracer dispersion study described in this paper is based on the model explored in detail by TY. In this section 
we provide a brief description of the model, the set up, and the main findings of the TY, before we examine tracer 
dispersion using the model.
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The two-vertical-mode model used by TY is obtained by projecting the f-plane hydrostatic Boussinesq equations 
onto the barotropic and the first baroclinic mode. For example, the horizontal velocity field, v, is expanded in 
vertical modes as: �(�, �, �) = �� (�, �) +

√

2cos(��∕�)�� (�, �) , where vT and vC denote the barotropic and the 
first baroclinic horizontal velocity fields respectively, H is the depth of the ocean, and cos(πz/H) is the first 
baroclinic mode eigenfunction. Projecting the hydrostatic Boussinesq equations on the barotropic and first baro-
clinic mode, after eliminating buoyancy using hydrostatic balance, gives a reduced two-dimensional model. The 
equations so obtained were then non-dimensionalized, choosing the inertial timescale, 1/f (where f is the constant 
rotation rate) as the timescale and the horizontal length scale to be the deformation scale: NH/f. An arbitrary 
velocity scale U was used to non-dimensionalize velocity fields and the geostrophic balance condition using the 
velocity scale U was used to obtain the scale for baroclinic pressure (pC). After non-dimensionalizing the reduced 
model, we obtain the equations:

𝜕𝜕𝜕𝜕𝑇𝑇

𝜕𝜕𝜕𝜕
+𝑅𝑅𝑅𝑅∇ × (𝒗𝒗𝑇𝑇 ⋅ ∇𝒗𝒗𝑇𝑇 + 𝒗𝒗𝐶𝐶 ⋅ ∇𝒗𝒗𝐶𝐶 + (∇ ⋅ 𝒗𝒗𝐶𝐶 )𝒗𝒗𝐶𝐶 ) = −𝛾𝛾𝛾𝛾𝑇𝑇 − 𝜈𝜈Δ8𝜁𝜁𝑇𝑇� (1a)

𝜕𝜕𝒗𝒗𝐶𝐶

𝜕𝜕𝜕𝜕
+ 𝒛̂𝒛 × 𝒗𝒗𝐶𝐶 + ∇𝑝𝑝𝐶𝐶 +𝑅𝑅𝑅𝑅 (𝒗𝒗𝑇𝑇 ⋅ ∇𝒗𝒗𝐶𝐶 + 𝒗𝒗𝐶𝐶 ⋅ ∇𝒗𝒗𝑇𝑇 ) = −𝜈𝜈Δ8

𝒗𝒗𝐶𝐶� (1b)

𝜕𝜕𝜕𝜕𝐶𝐶

𝜕𝜕𝜕𝜕
+ ∇ ⋅ 𝒗𝒗𝐶𝐶 +𝑅𝑅𝑅𝑅 (𝒗𝒗𝑇𝑇 ⋅ ∇𝑝𝑝𝐶𝐶 ) = −𝜈𝜈Δ8𝑝𝑝𝐶𝐶� (1c)

In the variables above, subscripts T and C indicate barotropic and baroclinic fields respectively and Ro = U/fL 
represents the Rossby number. The barotropic flow is divergence free and is entirely captured by the barotropic 
vorticity ζT, which is related to the barotropic streamfunction ψT via ζT = ∇ ×vT = ΔψT. The baroclinic fields are 
on the other hand composed of both waves and balanced mode, denoted with subscripts W and G; for example, the 
baroclinic velocity field can be decomposed as vC = vW + vG. Therefore the two-vertical-mode model is composed 
of three components: T, G, and W. The schematics of the model and the three components are shown in Figure 1a. 
In the small Rossby number regime, Ro ≪ 1, removing waves from the model leads to the two-mode quasi-geo-
strophic equations (see equations 2.18 in TY), that captures interactions between the barotropic (T) and baroclinic 
balanced mode (G). In such quasi-geostrophic turbulent regimes, the baroclinic balanced mode transfers energy 
to the barotropic flow, as indicated by the blue arrow in Figure 1a.

The work described in TY was inspired by observations of regions of high gravity wave energy levels in the world's 
oceans. In situ, satellite altimeter, and global scale ocean model outputs indicate that the balanced energy levels 
could be one-to-two orders of magnitude lower than wave energy levels in certain regions (Bühler et al., 2014; 
Lien & Sanford, 2019; Qiu et al., 2017; Qiu et al., 2018; Richman et al., 2012; Savage et al., 2017; Tchilibou 
et al., 2018; Torres et al., 2018). Notably, low baroclinic mode internal tides were seen to be the dominant wave 
field in some of the high wave energy regions, such as the north of Hawaii, North Pacific, and North Equatorial 
Current regions, for example. Consequently, TY explored interactions and the energy exchanges between the first 
baroclinic mode gravity waves and balanced flows and found significant energy exchanges in a regime identified 
as “Strong Wave” (SW) regime, with the scaling ET/EW ∼ Ro 2, where ET and EW denote barotropic and wave ener-
gies respectively. The red arrows in Figure 1a indicates the new energy transfers that appear due to waves, in addi-
tion to the blue arrow indicating geostrophic energy transfer. Therefore, in the SW regime, the quasi-geostrophic 
energy transfer is a subset of all the energy transfers that appear in the two-vertical-mode model. Energy transfers 
via gravity waves form a significant contribution toward the overall energetics of the two-vertical-mode model.

To set up the SW regime, as in TY, we initialized the barotropic and the baroclinic modes at low wavenumbers, 
k < 6, with white noise such that the initial energy was ET = EG ∼ Ro 2 and EW ∼ 1 (we used Ro = 0.1 through-
out). The QG regime is then a subset of the SW regime, where the waves were not initialized. We then integrated 
Equation 1 using dealiased pseudospectral numerical scheme. A doubly periodic domain, (x, y) ∈ [0,2π] 2, with 
384 2 grid points was used, yielding maximum wavenumber kmax = 128 after dealiasing. Figure 1b shows the 
energy spectrum of waves and the barotropic flow after the initial transients died off. Observe that the wave 
spectrum dominates over the barotropic spectrum for k ≤ 10, this being the signature of the SW regime. At the 
low wavenumbers, the wave field is purely linear: Figure 1c shows the frequency spectrum of the wave field for 
three different wavenumbers. Notice how the frequency spectrum peaks at values predicted by the inertia-grav-
ity waves' dispersion relationship: 𝐴𝐴 𝐴𝐴(𝑘𝑘) =

√

1 + 𝑘𝑘2 (denoted by dashed black vertical lines in the figure), and 
decays away from it. As detailed in TY, the energy transfers from waves to the balanced flow take place almost 
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exclusively at scales where wave spectrum lies over the balanced spectrum, that is, at scales k ≤ 10 in Figure 1b. 
To see this explicitly, we have to look at the energy equation. For the barotropic mode, multiplying Equation 1a 
with ψT and integrating over the domain gives us the barotropic energy equation:

𝐸𝐸𝑇𝑇 (𝑡𝑡) − 𝐸𝐸𝑇𝑇 (0) = 𝐸𝐸 triads

𝑇𝑇
− 𝑇𝑇 −𝐷𝐷𝑇𝑇� (2)

Above equation indicates that the changes in the barotropic energy (left hand side) is due to triadic interactions 
between the modes 𝐴𝐴 (𝐸𝐸 triads

𝑇𝑇
) , small-scale dissipation 𝐴𝐴 (𝑇𝑇 ) , and large-scale drag (DT). The black curve in Figure 1d 

shows the triadic energy transfer term 𝐴𝐴 𝐴𝐴 triads

𝑇𝑇
 normalized by its root-mean-square value computed during the time 

interval t = 0–2,000. Additionally, we truncated all the physical fields to k ≤ 10, retaining only the large-scale 
structure, and then computed the transfer term 𝐴𝐴 𝐴𝐴 triads

𝑇𝑇
 . For wave fields that exhibit a forward energy flux, with 

energy being continuously transferred to small scales, such a transfer term computed using fields restricted to low 
wavenumbers will deviate from the total transfer term as time progresses. The red curve in Figure 1d shows the 
truncated transfer term normalized by its root-mean-square value, which is almost identical to the total transfer 
term. Therefore, all the energy transfers to the barotropic flow takes place at low wavenumbers, where wave 
energy exceeds barotropic energy. With the setup we have, there is no forward flux of wave energy, which is why 
TY explored the regimes without having to externally force the physical fields. For a comprehensive description 
of all the energy transfers and comparison with truncated fields, we refer the reader to figure 8 in TY.

Snapshots of the barotropic vorticity field for the QG and the SW cases are shown in Figures 2a and 2b. Observe 
that the QG case is composed of well-formed coherent vortices – some large and some small vortices. In contrast, 
the SW flow is composed of energetic small-scale structures distributed throughout the domain. Although there 
is a tendency to form large coherent vortices via vortex mergers, high energy waves interact with the vortices and 
keeps generating energetic small-scale features. The barotropic energy spectra of these two flows are shown in 

Figure 1.  (a) Energy flow pathways for the model given in Equation 1. Blue arrow shows the energy transfer in the absence of waves, this being the sole energy transfer 
in QG turbulence. The red arrows indicate the additional energy transfers that appear in the SW regime. (b) Energy spectrum of wave (blue) and barotropic flow (red) 
in the SW regime. (c) Frequency spectrum of waves for wavenumbers k = 2, 4, and 6. The dashed black lines denote frequencies based on the dispersion relationship 

𝐴𝐴 𝐴𝐴(𝑘𝑘) =
√

1 + 𝑘𝑘2 . (d) Black curve indicates the energy transfer to the barotropic flow, 𝐴𝐴 𝐴𝐴 triads

𝑇𝑇
 , while the red curve indicates 𝐴𝐴 𝐴𝐴 triads

𝑇𝑇
 computed by truncating all the fields to 

k ≤ 10. Both curves have been normalized by their root-mean-square average in the time window t = 0–2,000.
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Figure 2c. Notice that the energy spectrum of the SW flow shows more energy at higher wavenumbers (or smaller 
scales) than the QG flow, this being a consequence of the small scales generated by wave-balance interactions.

Due to significant energy transfer from waves to the barotropic flow, the barotropic energy increases with time 
(see figure 5 in TY). We added the drag term − γζT in the barotropic Equation 1a to equilibrate the barotropic flow, 
so as to generate barotropic flows with same energy levels for QG and SW cases, as can be seen in Figure 2d. The 
presence of linear drag ensured that the barotropic energy did not increase with time in our present work. The 
addition of the linear drag term in the barotropic Equation 1a is the only change between the flow equations used 
in this work to generate QG and SW flows compared to that of TY. No drag term was used in TY, whereas we 
used a drag term to get the barotropic energy levels to saturate to the same magnitude in both QG and SW regimes.

Summarizing the discussion so far, we note that the presence of inertia-gravity waves can severely modify the 
balanced flow dynamics. While waves play no role in the QG regime dominated by large-scale coherent vortices, 
SW is a regime where inertia-gravity waves interact with the balanced flow and generates energetic small-scale 
structures. The SW regime specifically is expected to capture dynamics of oceanic regions where low baroclinic 
mode internal tidal energy is high. Given that this simple and easily tractable model allows access to two-different 
dynamic regimes – QG and SW – and the recent findings of wave dominating regions in the world's oceans, in this 
work we will explore how the characteristic features of tracer dispersion differ in the two different dynamic regimes.

We conclude this section by pointing out that the transition in flow dynamics, that is, the features of the baro-
tropic flow changing from QG to SW regime as seen in the top row of Figure 2, was consistently observed in 
the three-dimensional studies of Thomas and Daniel (2020) and Thomas and Daniel (2021). The non-divergent 
barotropic flow therefore forms the simplest two-dimensional flow that transitions in its dynamic features based 
on the wave energy level. We therefore treat the barotropic flow as a “prototype flow” that captures the essence of 
the transition between QG and SW regimes and explore the changes a passive tracer field stirred by the barotropic 

Figure 2.  Top row shows barotropic vorticity field in (a) QG and (b) SW regime at t = 1,200. Panel (c) shows the energy spectra of the barotropic flow in QG and SW 
cases obtained by time averaging from t = 800 to t = 1,600. Straight lines with slopes −3 and −4 are added for reference. Panel (d) shows the barotropic energy time 
series for QG and SW cases.
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flow experiences in the two different regimes. While the idealization we take advantage of would definitely result 
in loss of specific details seen in tracer dispersion experiments in more complex set ups, the qualitative phenom-
enological understanding we gain is expected to carry over beyond the simplifications we make. We refer the 
reader to Appendix A for insights on exploring tracer dispersion using the full two-vertical-mode model (instead 
of the barotropic flow alone) and shallow water models.

3.  Forced-Dissipative Tracer Experiments
In this section we will investigate how a passive tracer field maintained by forcing at large scales and dissipated 
at small scales will be influenced by the barotropic flows in QG and SW regimes. The tracer evolution equation is

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+ 𝒗𝒗 ⋅ ∇𝜃𝜃 = 𝑓𝑓𝜃𝜃 − 𝛼𝛼Δ8𝜃𝜃� (3)

where θ is the passive tracer advected by the barotropic flow v (hereafter we will omit the subscript “T” for the 
barotropic flow, which was used in Equation 1), fθ is a stochastic forcing term injecting tracer variance at large 
scales and αΔ 8θ is the hyperdissipation term dissipating tracer variance at grid scale.

We numerically integrated Equation  3 in QG and SW regimes with same barotropic energy levels, seen in 
Figure 2d. We used the stochastic forcing scheme discussed in Alvelius (1999) to ensure a constant rate of tracer 
variance injection, forcing tracer variance at low wavenumbers, 5 ≤ k ≤ 6, as white noise and chose α = 10 −34 in 
Equation 3, thereby confining tracer variance dissipation to k ∼ 100. This set up provided a broad set of inviscid 
scales for the tracer field, allowing the tracer field to be stirred and filamented by the flow, tracer variance grad-
ually cascading to smaller and smaller scales, eventually reaching grid scales and being dissipated.

We observed that the barotropic flow fields were fully developed by t ∼ 200 in Figure 2d and started advecting the 
tracer field by the flow at t = 600. After initial transients, both tracer fields equilibrated at a statistical steady state 
around t = 700. We therefore performed all the tracer diagnosis from t = 800–1,600, this being the time interval 
during which time averaging of various statistical quantities described below were performed. During this time 
interval, we observed that �

��
� ∕�

��
� = 1.000 5 (where over bar denotes time averaging), indicating that both QG 

and SW barotropic flows had almost identical mean energy levels.

Snapshots of the tracer fields advected by the QG and SW flows are shown in Figures 3a and 3b, while corre-
sponding plots showing spatial structure of tracer gradient are given in Figures 3c and 3d. In the QG case, where 
the flow is dominated by well-defined coherent vortices, most of the tracer stirring takes place in straining regions 
between vortices. This feature can be seen in Figures 3a and 3c – observe that the tracer and its gradient attain 
intermittently large values in straining regions between vortices, these being regions where stirring by the eddies 
are strong. In contrast, away from high straining regions, especially inside coherent vortices, the tracer field and 
its gradient are homogenized and take up low values. Coherent vortices are in general known to be transport 
barriers with negligible effective diffusivity inside them (see e.g., discussions in Shuckburgh & Haynes, 2003). 
In contrast, stirring and mixing of the tracer is much broadly distributed in the SW case, as seen in Figures 3b 
and 3d. The spatial intermittency in regions where efficient stirring of the tracer take place is a key difference 
between QG and SW flows. Stirring by the QG flow is much more spatially localized and intermittent when 
compared to stirring by the SW flow, which is broadly spread over the domain.

The spatial intermittency in stirring by QG and SW flows can be seen in the histograms of tracer field and the 
tracer gradient fields shown in Figures 4a and 4b. In Figure 4a showing the histogram of the tracer field, we 
added a Gaussian curve which is indicated by the dashed blue curve. Notice that the tracer fields in both QG and 
SW flows depart from the Gaussian, although the QG case is relatively more fat-tailed than the SW flow. The 
kurtosis for the QG flow is 7.4, while that of SW flow is 6.1. In addition to the higher kurtosis, some level of 
asymmetry (especially for density values below 10 −2) and therefore skewness is seen in Figure 4a for histogram 
of the tracer field. However, the magnitude of the skewness is quite small and the sign of skewness was seen to 
change unpredictably for different tracer experiments we examined. Different experimental realizations were seen 
to have fluctuating (positive or negative) small skewness values. In contrast, the higher kurtosis for the QG case 
when compared to the SW case was a persistent feature that was observed in all realizations of tracer fields we 
examined in QG and SW flows.
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Figure 3.  Panels (a) and (b) show snapshots of the spatial structure of the tracer field while panels (c) and (d) show the spatial structure of the gradient of the tracer 
field, all at t = 1,200. Observe that the tracer field and its gradient are localized and spatially intermittent in the QG case shown in (a) and (c), while the fields are 
broadly spread and less intermittent in (b) and (d) for the SW flow.

Figure 4.  Panel (a) shows the histogram of the tracer field normalized by the maximum value of the tracer field. The kurtosis of the histograms are: KQG = 7.4 and 
KSW = 6.1. The blue dashed curve is a Gaussian curve for comparison. Panel (b) shows the histogram of the tracer gradient normalized by tracer gradient maximum for 
QG and SW flows. The dashed lines are exponential curves to indicate that the tails of the tracer gradient histograms decay exponentially. The fourth moments of the 
tracer gradient are: MQG = 3.4 × 10 −3 and MSW = 1.5 × 10 −3.
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The contrast in kurtosis is more explicitly seen in Figure 4b showing the histogram of the gradient of the tracer 
field. The dashed lines are exponential curves (which appear as straight lines due to the log scale used for plot-
ting), added to the figure to indicate that at extreme values the histograms have an exponential nature. Similar to 
the tracer field's histogram, the tracer gradient histogram also shows higher level of fat-tailedness for the QG case 
compared to the SW case. The fourth moments of the histogram are 3.4 × 10 −3 for the QG case and 1.5 × 10 −3 for 
the SW case. The higher value for the moments for the QG case in comparison to the SW case reflects the higher 
spatial intermittency of the tracer field and its gradient in the QG case in comparison to the SW case, as seen in 
physical fields shown in Figure 3.

Our diagnosis reveal that the SW flow is more efficient in stirring and mixing tracer fields when compared to the 
QG flow. The richer and energetic small-scale features in the SW flow generates filaments of tracer field all over 
the domain, as opposed to the spatially intermittent stirring that is efficient in specific regions of the domain in 
the QG case. To get a better handle on the transfer of tracer variance from large domain scales to small dissipative 
scales, we will now examine the flux of tracer variance. To construct the tracer variance flux equation, we define 

𝐴𝐴 𝜃𝜃𝐿𝐿 as the tracer field restricted to scales greater than or equal to a cut-off scale L. 𝐴𝐴 𝜃𝜃𝐿𝐿 is therefore obtained by a 
spectral filter that removes all components of the tracer field θ that is smaller than the cut off scale L or wavenum-
bers higher than kL = 2π/L, that is, 𝐴𝐴 𝜃𝜃𝐿𝐿 = 

−1
(

𝜃̂𝜃(𝑘𝑘 ≤ 𝑘𝑘𝐿𝐿)
)

 where 𝐴𝐴 𝜃̂𝜃 is the Fourier transform of θ, and 𝐴𝐴 
−1 denotes 

the inverse Fourier transform. We apply the spectral filter to the tracer Equation 3 to get

��̃�
��

+ ̃(� ⋅ ∇�)� = �̃� − �Δ8�̃�� (4)

We multiply above equation by 𝐴𝐴 𝜃𝜃𝐿𝐿 and manipulate the resulting equation to obtain:

�
��

(

�̃2�
2

)

+ ∇ ⋅
(

�̃� (̃��)�
)

=
(

(̃��)� ⋅ ∇�̃
)

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
−Π̃�

+ �̃� − �̃�
� (5)

Above equation governs the time evolution of 𝐴𝐴 (1∕2)𝜃𝜃2
𝐿𝐿
 , that is, tracer variance associated with scales larger than 

and equal to L (see chapter 13 of Pope, 2000 for derivation of similar equations via filtering). The term (̃��)� 
denotes the field obtained by filtering the product of tracer and the velocity field. 𝐴𝐴 𝐹𝐹𝐿𝐿 and 𝐴𝐴 𝐷̃𝐷𝐿𝐿 denote filtered 
tracer variance injection and tracer variance dissipation. The second term on the left hand side of Equation 5 
is responsible for transport of the large-scale tracer field in the domain. On integrating the above equation over 
the domain, this divergence term makes no net contribution. The first term on the right hand side of Equation 5, 
Π̃� = −

(

(̃��)� ⋅ ∇�̃
)

 , does not vanish on integrating over the domain. Π̃� is the tracer variance flux and is 
responsible for the transfer of tracer variance from scales larger than or equal to L to smaller scales.

Figures 5a and 5b show 𝐴𝐴 Π̃𝐿𝐿 for the QG and SW cases normalized by their respective root-means-square values for 
kL = 30. Similar spatial plots of fluxes are shown in Figures 5d and 5e for kL = 70. The spatial plots of the fluxes 
were computed and time-averaged to obtain these figures. Observe that fluxes have both positive and negative 
values over the domain. Although 𝐴𝐴 Π̃𝐿𝐿 integrated over the whole domain – which gives the net flux of tracer 
variance to scales smaller than L – is positive, locally 𝐴𝐴 Π̃𝐿𝐿 can have negative values. Compare Figures 5a and 5b. 
Observe that the SW case has high values of 𝐴𝐴 Π̃𝐿𝐿 distributed over larger areas of the domain than the QG case. A 
similar conclusion is reached by comparing Figures 5d and 5e – the tracer field for the SW flow has larger regions 
of downscale tracer variance flux. These inferences are quantified by histograms of fluxes shown in Figures 5c 
and 5f. The mean of the histograms are shown by dashed vertical lines. Although the means are positive for both 
cases, indicating a net downscale transfer of tracer variance, the mean for the SW case is five to six times higher 
than the QG case. Our conclusions based on examining the spatial structure of fluxes is concomitant with the 
previous inferences of efficient stirring of the tracer field in broader regions of the domain for the SW flow when 
compared to the QG flow. Tracer variance flux takes higher values over much larger parts of the domain in the 
SW case when compared to the QG case, resulting in enhanced stirring and transfer of tracer variance from large 
forcing scales to small dissipative scales.

To compare the efficiency of stirring at different scales, we will now examine norms of the tracer field (Thif-
feault, 2012). The q-norm of θ is defined as:
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||𝜃𝜃||𝑞𝑞 =
∑

𝒌𝒌≠0

(

𝑘𝑘2𝑞𝑞
|𝜃̂𝜃𝒌𝒌|

2
)1∕2

� (6)

As seen above, q-norm is obtained by taking appropriate moments of the tracer field in spectral space and 
summing over all wavenumbers. For q = 0, the expression in Equation 6 is proportional to the square root of 
tracer variance while for q = 1, Equation 6 is proportional to tracer gradient integrated over the domain. Further-
more, q in the q-norm above can take negative values. For example, q = −1 and q = −2 are integrated estimates 
for (−Δ) −1/2θ and −Δθ.

The q-norm is essentially a metric that provides us a weighted estimate of the tracer field with respect to spatial 
scales. By choosing q > 1, we get an estimate for the tracer field at higher wavenumbers or smaller scales. On 
the other hand, q < 0 gives us tracer field estimate at small wavenumbers or large scales. As detailed in Thif-
feault  (2012), the q-norm is useful in estimating scale-dependent efficiency of stirring of tracers by different 
flows. Efficiency of stirring based on q-norms for comparing QG and SW flows can be defined as:

𝜂𝜂 = ||𝜃𝜃QG
||𝑞𝑞∕||𝜃𝜃

SW
||𝑞𝑞� (7)

The efficiency η, constructed as the ratio of QG and SW q-norms gives an estimate for the relative tracer fluctua-
tions at different scales. Suppose for q > 0 we obtained η < 1. This implies that the q-norm for SW flow is higher 
than that for QG flow, indicating relatively lower tracer fluctuations at high wavenumbers for the QG case and 
thereby implies better stirring in the QG case (since lower tracer fluctuations at a certain scale means that there is 
stronger stirring, expelling the tracer field to smaller scales at a faster rate). On the contrary, if we obtained η > 1 
for q > 0, that would indicate that the SW flow is more efficient in stirring at small scales, since the q-norm for 
the SW case is less than that of the QG case.

Figure 5.  Top row shows spatial structure of normalized tracer variance flux, 𝐴𝐴 Γ𝐿𝐿 = Π̃𝐿𝐿∕Π̃
RMS

𝐿𝐿
 , for (a) QG (b) SW for kL = 30. The histogram of fluxes are shown in 

panel (c). Bottom row shows same quantities as the top row for kL = 70.
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To examine stirring efficiency at different scales we computed η in Equation 7 for q = −2, −1, 1, and 2 and the 
time series of the efficiencies are given in Figure 6a. We observe that η is close to 1 for q = −2 and −1. This 
means that at large scales the stirring capabilities of the QG and SW flows are more or less comparable. On the 
other hand, as seen in Figure 6a, η is close to 2 for q = 1 and 2. Therefore, at smaller scales the SW flow is twice 
as efficient as the QG flow in stirring the tracer field. Our estimation of stirring efficiencies for different q directly 
reveals the scale-dependent stirring tendencies of the two flows. Although stirring tendencies are comparable 
for the two flows at large scales, the SW flow is more efficient than QG flow at smaller scales. The notable 
differences in the stirring capabilities of the tracer field across scales in QG and SW cases leads to significant 
differences in the tracer variance spectrum in the two regimes, as seen in Figure 6b showing the tracer variance 
spectra for the two cases. The enhanced small-scale stirring by the SW flow leads to much more depletion of 
tracer variance at small scales in the SW regime, as seen in Figure 6b, resulting in a steeper tracer variance spec-
trum in the SW case relative to the QG case.

To complete our analysis of forced-dissipative tracer experiments, we will now examine the mixing timescale of 
the tracers in the two regimes. For this, we define the autocorrelation of the tracer field as:

(𝜏𝜏) = {𝜃𝜃(𝑡𝑡)𝜃𝜃(𝑡𝑡 + 𝜏𝜏)}� (8)

where curly braces above indicate ensemble averaging. 𝐴𝐴  measures the correlation of the tracer field with itself 
and gives an estimate of the “memory” of the tracer field. A tracer field that is getting mixed on a fast timescale 

Figure 6.  (a) Time series of efficiency, η, for different q. t0 = 600 above. (b) Tracer variance spectra for QG and SW flows. Straight lines with slope −1 and −2 are 
added for reference. (c) Time series of autocorrelation, 𝐴𝐴 (𝜏𝜏) . Main figure shows a short period while the inset shows a longer duration.
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will have 𝐴𝐴  decay from 1 at τ = 0 to low values in a relatively short duration. On the other hand, a slowly mixing 
tracer field will have 𝐴𝐴  decrease on a much longer timescale. The rate at which 𝐴𝐴  decay is therefore a measure of 
how fast a tracer field mixes (see discussions in Qi & Majda, 2018 and Majda & Kramer, 1999). We computed 𝐴𝐴  
using tracer time series collected from 10,000 grid points in the domain and Figure 6c shows the evolution of 𝐴𝐴  
for the two flows. Observe that 𝐴𝐴  drops much faster for the SW flow compared to the QG flow. Time integrating 

𝐴𝐴  would provide us with a timescale for mixing. We define two mixing timescales, similar to that employed by 
Qi and Majda (2018):

𝜏𝜏abs

mix
=
∫

∞

0

|(𝜏𝜏)|𝑑𝑑𝑑𝑑 and 𝜏𝜏mix =
|

|

|

|

∫

∞

0

(𝜏𝜏)𝑑𝑑𝑑𝑑
|

|

|

|

� (9)

On calculating the mixing timescales above, we obtained 𝐴𝐴 𝐴𝐴abs

mix
(QG)∕𝜏𝜏abs

mix
(SW) = 2.75 and τmix(QG)/τmix-

(SW) = 2.09. The mixing timescale for the SW flow is therefore less than half the mixing timescale of the QG 
flow, implying that the SW flow is overall more efficient than the QG flow in mixing tracers.

4.  Freely Evolving Tracer Experiments
In the previous section we explored the dynamics of a passive tracer that was forced at large scales and dissi-
pated at small scales, thereby maintaining an equilibrated tracer field over the entire domain. The forced-dissipa-
tive experiments and our diagnosis revealed that stirring in the SW regime is enhanced at smaller scales, when 
compared with the QG case. In this section we will explore how spatially localized blobs of tracers evolve in the 
two regimes, and get a handle on the turbulent diffusivity of the flows. The localized-in-space initial value tracer 
experiments described in this section are inspired by oceanographic field campaigns that release dye tracers in 
different locations in the ocean and track the tracer's subsequent evolution to estimate turbulent diffusivity of the 
flow (Ledwell et al., 1993; Polzin & Ferrari, 2004; Shcherbina et al., 2015; M. Sundermeyer & Ledwell, 2001; 
M. A. Sundermeyer et al., 2019).

For the freely evolving localized tracer stirring experiments, we initialized Gaussian blobs of tracer 
�(�, �, � = 0) = exp

(

−
(

(� − �0)2 + (� − �0)2
)

∕�2
)

 and chose a = 2π/80 so that the initial blobs were 1/80th the 
size of the domain. We used 30 different ensembles for both QG and SW flows, by choosing different values for 
(x0, y0), ensuring that the initial tracer locations spanned over the entire domain. We advected the tracer field by 
the same flows shown in Figure 2, as in the previous section, but this time integrating Equation 3 with fθ = 0, 
that is, no tracer forcing. Tracer blobs were initialized at t = 1,200 and were advected up to t = 1,400. Beyond 
this time limit, the small-scale parts of the tracer fields were seen to get severely ruptured and dissipated at grid 
scale. Since the time interval for integration was seen to be sufficient for the large-scale tracer patches to reach 
domain scale, due to the tracer blobs being stretched and deformed by the flow, we chose Δt = 200 as the length 
of our time interval.

Out of the 30 ensemble members, three examples for QG and SW flows are given in the top row of Figure 7. 
Overall we found that the SW flow stirred the tracer blobs into longer convoluted patterns than the QG flow, as 
can be seen by comparing Figures 7a and 7b. Multiplying the tracer Equation 3 (without the forcing term fθ) with 
θ and integrating over the domain we get the tracer variance equation:

𝑑𝑑

𝑑𝑑𝑑𝑑
< 𝜃𝜃2 >= −𝐷𝐷𝜃𝜃� (10)

where angle brackets indicate integration over the entire domain and Dθ is the dissipation of tracer variance at 
small scales. Contrary to the forced-dissipative experiments considered in the previous section, where tracer vari-
ance reaches an equilibrated state, the freely evolving experiments are characterized by tracer variance decaying 
with time. Although the advective terms do not appear explicitly in Equation 10, their action of generating finer 
scales in the tracer field accelerates transfer of the tracer variance to dissipative scales. Figure 7c shows the time 
series of ensemble averaged tracer variance for QG and SW flows. The more efficient stirring of the tracer blobs 
by the SW flow than the QG flow results in higher drop of tracer variance in the SW flow: observe that about 
21% of tracer variance is lost in QG flow while 48% is the tracer variance loss in the SW flow. From Equation 10, 
balancing rate of change of tracer variance with dissipation gives us a mixing timescale, Tmix, representative of 
the timescale required for the transfer of tracer variance toward dissipative scales as:
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𝑇𝑇mix(𝑡𝑡) = −
< 𝜃𝜃2 >

𝐷𝐷𝜃𝜃

� (11)

Figure 7d shows Tmix for QG and SW cases. Observe that Tmix for the QG flow is two orders or more higher than 
for the SW flow. The enhanced stirring and mixing properties of the SW flow leads to lower mixing time in the 
SW case than in the QG case.

Figure 7.  Top row shows tracer initial state (Gaussian blobs indicated as concentric circles) and final stretched states for (a) 
QG and (b) SW regimes for three ensemble members. Second row shows time series of (c) ensemble averaged tracer variance 
normalized by initial variance and (d) ensemble averaged Tmix. Panel (e) shows time series of ensemble averaged σ 2. Based on 
a linear fit for σ 2 versus t, we found the ratio of effective diffusivity of SW and QG flow to be 𝐴𝐴 (𝑆𝑆𝑆𝑆 ∕𝑄𝑄𝑄𝑄)𝑡𝑡=150−200 = 4.42 .



Journal of Geophysical Research: Oceans

THOMAS AND GUPTA

10.1029/2020JC017005

13 of 18

We will now estimate the diffusivities of the QG and SW flows based on the time evolution of the tracer blobs 
(Csanady, 1980; Fischer et al., 1979; Peeters et al., 1996; Taylor, 1922). For the diffusivity estimation, we first 
computed the center of mass (xCM, yCM) of the tracer blobs as

(���, ��� ) = ∬ (�, �)� ����
/

∬ � ����� (12)

which was used to compute the variances as

��� = ∬ (� − ��� )2� ����
/

∬ � ����� (13a)

��� = ��� = ∬ (� − ��� )(� − ��� )� ����
/

∬ � ����� (13b)

��� = ∬ (� − ��� )2� ����
/

∬ � ����� (13c)

Above variances were then assembled to form the covariance matrix

Σ =

⎡

⎢

⎢

⎢

⎣

��� ���

��� ���

⎤

⎥

⎥

⎥

⎦

� (14)

The eigenvalues of the covariance matrix Σ, denoted as 𝐴𝐴 𝐴𝐴2
𝑎𝑎 and 𝐴𝐴 𝐴𝐴2

𝑏𝑏
 , represent the fractional variance experienced 

along the major and the minor axis of a hypothetical Gaussian cloud that could be fitted to the deformed tracer 
patch. The hypothetical Gaussian cloud then has an effective variance σ 2 = 2σaσb. Figure 7e shows the time 
evolution of ensemble averaged σ 2 for the QG and the SW flows. As expected, much higher values of σ 2 are 
observed for the SW flow when compared with the QG flow. Since the tracer blobs are initially small in size, the 
rapid increase of σ 2 on early timescales in the SW case compared to the QG case is an indication of the enhanced 
stirring at small scales in the SW case.

To estimate an effective diffusivity experienced by the tracer patch, we fit a straight line to the the variance data 
using the method of least squares to obtain the relationship 𝐴𝐴 𝐴𝐴2 = 4𝑡𝑡 + 𝐶𝐶 , so that differentiating with respect to 
time gives us the diffusivity: 𝐴𝐴  = (1∕4)𝑑𝑑𝑑𝑑2∕𝑑𝑑𝑑𝑑 . We applied the linear fit to the time interval t = 150–200, suffi-
ciently away from initial transients. Using this procedure, we computed 𝐴𝐴  for the QG and SW cases and found 
that 𝐴𝐴 (𝑆𝑆𝑆𝑆 ∕𝑄𝑄𝑄𝑄)𝑡𝑡=150−200 = 4.42 . On longer timescales we observed that SW flow's diffusivity further increased; 
notice that a tendency for further increase in σ 2 can be gleaned from the final stages of the red curve in Figure 7e. 
However, as mentioned earlier, tracer patches were seen to be severely ruptured and dissipated at grid scale on 
such long timescales, due to which we kept our freely evolving experiments' duration to Δt = 200.

Overall, our freely evolving locally initialized tracer experiments compliment the qualitative conclusions from 
Section 3 based on forced dissipative experiments. SW flow stirs and mixes tracer patches much more effectively 
than the QG flow, resulting in about to five times higher diffusivity and lower mixing time.

5.  Summary and Discussion
Over the past one decade a wide range of datasets, including in situ oceanic observations and high resolution 
global scale ocean model outputs, indicate increased levels of gravity wave energy on transitioning from mesos-
cales to submesoscales in the world's oceans. Investigations, using three-dimensional Boussinesq equations and 
reduced two-dimensional models, reveal breaking up of coherent vortices and formation of energetic small-scale 
dynamics in wave-dominated turbulent regimes (TY, Thomas & Arun, 2020; Thomas & Daniel, 2020, 2021). 
Although the specific energy transfer details depend on the kind of wave field, turbulent dynamics of wave-dom-
inated regimes are in general significantly different from quasi-geostrophic regimes, the latter consisting of 
well-defined large-scale coherent vortices. The barotropic flow of the two-vertical-mode model explored by 
TY is an idealized flow that undergoes a transition in its turbulent features in high wave energy regimes. In the 
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absence of waves, the barotropic energy accumulates in large coherent vortices, as expected in the quasi-geo-
strophic (QG) regime. On the other hand, wave-dominated SW regime with ET/EW ∼ Ro 2 is characterized by 
generation of energetic small-scale structures and breaking up of coherent vortices. The barotropic flow there-
fore is an idealized flow whose dynamic features transitions in moving from QG to SW regime. To explore the 
changes in tracer dispersion characteristics in the two different regimes using the simplest possible set up, in this 
work we treated the barotropic flow as a “prototype flow” that captures the qualitative dynamic features of QG 
and SW regimes and analyzed tracer dispersion in the two regimes.

For comparing flows of similar strengths, we generated barotropic flows with ET ∼ Ro 2 in both QG and SW 
regimes. While no waves were initialized in the QG case, we initialized waves with EW ∼ 1 in the SW case. Once 
the barotropic flows were fully developed, we advected passive tracer fields by the flows. We first examined 
turbulent dynamics of an equilibrated passive tracer field that was maintained by external forcing at large scales 
and dissipated at small scales. Although forced at large scales, stirring by the flow generates fine scale features 
in the tracer field, resulting in tracer variance cascading to small scales and getting dissipated. In the QG regime 
we found that the most efficient stirring of the tracer field was in high straining regions between coherent vorti-
ces. In contrast, the SW flow was characterized by enhanced stirring all over the domain with fine scales being 
continuously generated in the tracer field. Our examination of tracer fluxes pointed out that the SW flow lead to 
higher tracer variance flux over a larger fraction of physical domain when compared to the QG flow, resulting 
in increased stirring and mixing features of the SW flow when compared to the QG flow. On examining tracer 
norms, we found that although stirring of the tracers were more or less comparable at large scales, energetic small 
scales in the flow resulted in SW flow being more efficient than QG flow in stirring the tracers. Concomitantly, 
the timescale of mixing was seen to be lower for the SW flow when compared with the QG flow.

We followed up the forced-dissipative experiments with freely evolving tracer experiments where tracer fields 
were initialized locally as Gaussian blobs. The freely evolving tracer experiments were inspired by routine ocean-
ographic cruises that measure turbulent diffusivity of oceanic flows by releasing dye tracers in the ocean and 
then monitoring their spreading with time. Complementary to our forced tracer experiments, the freely evolving 
experiments also revealed more efficient stirring by the SW flow with a smaller mixing timescale when compared 
to the QG flow. Tracer variance at early times was seen to increase much more rapidly in the SW case relative to 
the QG case, indicating enhanced stirring of tracers at smaller scales. On examining the turbulent diffusivity of 
the flows by quantifying the stirring of the tracer blobs, we found that the SW flow had higher diffusivity overall, 
with SW flow's diffusivity being about to five times higher value than that of the QG flow's.

The findings described above point out that wave-dominated flows, rich in energetic small-scale structures 
formed by breaking up of coherent vortices due to wave-balance interactions, can enhance tracer dispersion, 
increase the turbulent diffusivity, and decrease mixing timescales of the flow. Notably, waves modify the flow, 
that stirs the tracer field, thereby indirectly influencing tracer dispersion. Multiple past studies have tried to 
examine the role played by waves in oceanic dispersion problems by time filtering and removing waves from the 
data, and then comparing the dispersion by the full data and time-filtered “wave-free” data (this procedure for 
example is implemented in the recent work by Rossby et al., 2021). Such a procedure often leads to the conclusion 
that fast waves simply fluctuates around and does not cause any effective dispersion. In regimes where waves 
are strong, such as the SW regime we examined, the wave field can significantly modify the mean flow (i.e., the 
time-averaged flow that remains after filtering fast fluctuations). Gravity waves modify the flow, leading to the 
generation of energetic small-scale mean flow structures, which in turn enhances tracer dispersion. The indirect 
role that waves play in enhancing tracer dispersion, summarized in schematics shown in Figure 8, is the central 
take home message of this study.

Our results also corroborates with those studies that have explored dispersion in the presence of internal tides. 
Recall that SW regime is expected to apply to oceanic regions where baroclinic tides are energetic. In this direc-
tion, observational work of Meyerjurgens et al. (2020) using surface drifters and realistic coastal region simula-
tions analyzed by Suanda et al. (2018) indicate that baroclinic tides can increase dispersive characteristics of the 
flow. Specifically, Suanda et al. (2018) finds three to four times higher dispersion in regions with baroclinic tides, 
when compared with scenarios that lack baroclinic tides. Once again, although direct comparisons between these 
studies and our idealized set up is challenging, the numbers reported in these studies are of comparable magnitude 
to the changes we found in our study, such as the tracer diffusivity shown in Figure 7e being four to five times 
higher in the SW regime when compared to the QG regime. We therefore speculate that the mechanism sketched 
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in Figure 8, of waves indirectly modifying the flow which in turn enhances tracer dispersion, might be operating 
in oceanic regions where baroclinic tides are strong.

We conclude by reminding the reader that the present work that considered tracer stirring by barotropic flow is 
a severe idealization of a complex three-dimensional oceanographic process. As mentioned earlier, interior parts 
of the ocean are often seen to have much steeper tracer spectra than that predicted based on quasi-geostrophic 
turbulence phenomenology (see datasets and discussions in Callies & Ferrari, 2013; Cole & Rudnick, 2012; Cole 
et al., 2010; Ferrari & Rudnick, 2000; Klymak et al., 2015; Kunze et al., 2015). Given the myriads of processes that 
operate at submesoscales, it is highly nontrivial to separate out the distinct mechanisms that contribute toward steep 
tracer spectra in above mentioned oceanic regions. Furthermore, as pointed out by Galperin and Sukoriansky (2020) 
and Galperin et al. (2021), spectral slope alone is insufficient to uniquely identify the dynamics. Amplitudes of 
the flow variables, level of anisotropy, and the fluxes of the flow variables are inevitable to associate features that 
are seen in oceanic observations with corresponding physical processes. By choosing to advect tracer fields in the 
QG and SW regimes by the barotropic flow alone, multiple realistic ingredients – such as vertical shear, baroclinic 
submesoscale vortices, and small-scale wave breaking events – that contributes toward tracer dispersion in the real 
ocean was ignored. Despite these shortcomings, the higher tracer variance flux (Figure 5) and steeper tracer variance 
spectra (Figure 6b) in the SW regime compared to the QG regime seen in our set up suggests that wave enhanced 
tracer dispersion might play an important role in wave dominant oceanic regions discussed earlier. Of course, quan-
tifying tracer dispersion in QG and SW regimes by incorporating the missing ingredients of this study requires dedi-
cated fully three-dimensional explorations using the non-hydrostatic Boussinesq equations. We hope to undertake 
such three-dimensional investigations to complement the present work in the near-future.

Appendix A:  Tracer Dispersion by Compressible Flows
In this work we treated the barotropic flow as an idealized prototype flow that captures the essence of the flow 
transition between QG and SW regimes and analyzed tracer dispersion using the barotropic flow alone. Referring 
to the full set of Equations 1a–1c, one may anticipate advecting tracer fields with both barotropic and baroclinic 
velocity fields, instead of the barotropic field alone. However, quantifying results from such a tracer dispersion 
experiment becomes challenging, since the baroclinic velocity field is divergent, that is, ∇ ⋅vC ≠ 0. To see the 
difficulty explicitly, recall that if the advecting velocity field is divergence free, in the absence of forcing and 
dissipative effects, tracer variance integrated over the domain is conserved in time. This can be seen by setting 

Figure 8.  Schematics showing the gist of the tracer dispersion phenomenology in QG (left panel) and SW regimes (right 
panel). The black box represents the barotropic flow, the red box represents gravity waves, and the blue box represents 
the tracer field. In the QG regime, the barotropic flow is dominated by large-scale coherent vortices and straining regions 
between vortices are active sites of tracer stirring. In contrast, gravity waves exchange energy with the barotropic flow and 
generate energetic small-scale features in the flow. This modified barotropic flow stirs tracers much more efficiently when 
compared to the case in the QG regime. Gravity waves therefore play an indirect role, by modifying the barotropic flow, 
which in turn advects tracers. The indirect role played by gravity waves in enhancing tracer dispersion is the key finding of 
this study.
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fθ = α = 0 in Equation 3 and multiplying the resulting equation by θ and integrating over the domain, which leads 
to d<θ 2>/dt = 0, where < > indicates integration over the whole domain. The manipulations leading to the result 
requires the advecting velocity field to be divergence free, implying that tracer variance will not be conserved 
if tracer field is advected by a divergent velocity field. A similar issue arises in shallow water equations, where 
tracer variance is not conserved in the inviscid limit; rather it is the product of height and tracer variance that is 
conserved. It is noteworthy that none of these ambiguities appear in the hydrostatic Boussinesq equations, from 
which the reduced model (Equation 1) is derived, since the three-dimensional velocity field in the Boussinesq 
equations is divergence free. For more detailed discussions on features and techniques to quantify tracer disper-
sion by divergent velocity fields, we refer the reader to Thiffeault (2021).

As part of this work we did explore advecting tracer fields with both barotropic and baroclinic velocity fields. 
The qualitative results described earlier, specifically smaller scale baroclinic features in the flow advecting tracer 
fields more efficiently, was observed in SW regime. This is not surprising, since the baroclinic flow in the 
SW regime generates small-scale vortical features, just like the barotropic flow (see e.g., Figure 4b and related 
discussion in TY). Despite the similarity in qualitative features, the corresponding forms of tracer variance equa-
tions such as Equation 5 in the presence of non-divergent baroclinic velocity field is much more cumbersome. 
To examine the tracer dispersion characteristics in two different regimes using the simplest setting possible, we 
eliminated the extra complexities introduced by involving the full divergent baroclinic mode, and advected the 
tracer fields with the barotropic flow alone in the present work.

Data Availability Statement
Datasets and codes corresponding to the results presented in this manuscript are available in the repository: 
https://zenodo.org/record/5874936.
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