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ABSTRACT: Oceanic flows are energetically dominated by low vertical modes. However, disturbances in the form of at-
mospheric storms, eddy interactions with various forms of boundaries, or spontaneous emission by coherent structures can
generate weak high-baroclinic modes. The feedback of the low-energy high-baroclinic modes on large-scale energetically
dominant low modes may be weak or strong depending on the flow Rossby number. In this paper we study this interaction
using an idealized setup by constraining the flow dynamics to a high-energy barotropic mode and a single low-energy high-
baroclinic mode. Our investigation points out that at low Rossby numbers the barotropic flow organizes into large-scale co-
herent vortices via an inverse energy flux while the baroclinic flow accumulates predominantly in anticyclonic barotropic
vortices. In contrast, with increasing Rossby number, the baroclinic flow catalyzes a forward flux of barotropic energy. The
barotropic coherent vortices decrease in size and number, with a strong preference for cyclonic coherent vortices at higher
Rossby numbers. On partitioning the flow domain into strain-dominant and vorticity-dominant regions based on the baro-
tropic flow, we find that at higher Rossby numbers baroclinic flow accumulates in strain-dominant regions, away from vor-
tex cores. Additionally, a major fraction of the forward energy flux of the flow takes place in strain-dominant regions.
Overall, one of the key outcomes of this study is the finding that even a low-energy high-baroclinic flow can deplete and
dissipate large-scale coherent structures atO(1) Rossby numbers.
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1. Introduction

A significant fraction of oceanic mesoscale flow, with lateral
scales ofO(100) km, is in geostrophic and hydrostatic balance.
These balance constraints on the flow lead to an inverse en-
ergy flux, organizing the balanced flow into large-scale coher-
ent vortices or eddies (Scott and Wang 2005; Chelton et al.
2011). Since geostrophic energy on average gets transferred
to larger scales, potential mechanisms that can break these
constraints, reverse the energy flux from inverse to forward,
and thereby enhance small-scale dissipation of balanced flow
are actively sought after. With the mesoscale balanced flow
being fed through instabilities of larger basin-scale flow, iden-
tifying potential mechanisms that can insinuate loss of balance
and assist in small-scale dissipation of balanced energy is a
crucial ingredient for closing the overall oceanic energy bud-
get (Wunsch and Stammer 1998; Ferrari and Wunsch 2010).

In addition to the balanced eddies, oceanic flows are rich in
inertia–gravity waves generated by atmospheric winds and
gravitational tides. Contrary to the dynamics of the balanced
flow, inertia–gravity waves exhibit a forward energy flux and
dissipate their energy at small viscous scales. Furthermore, re-
cent oceanic observational datasets and realistically forced

global-scale ocean model outputs reveal that depending on
the geographic location and season, wave energy levels can
locally be comparable or stronger than balanced energy
(Richman et al. 2012; Bühler et al. 2014; Qiu et al. 2017; Savage
et al. 2017; Qiu et al. 2018; Tchilibou et al. 2018; Torres et al.
2018; Lien and Sanford 2019). These datasets have inspired a
broad set of investigations aimed at understanding how gravity
waves interact with balanced flow and modify quasigeostrophic
turbulent dynamics, specifically with an eye on deducing whether
waves can form an energy sink for balanced energy.

Dedicated idealized explorations using reduced asymptotic
models, two-vertical-mode models, and full Boussinesq equa-
tions (Gertz and Straub 2009; Xie and Vanneste 2015; Wagner
and Young 2016; Taylor and Straub 2016; Rocha et al. 2018;
Thomas and Yamada 2019; Thomas and Arun 2020; Xie 2020;
Thomas and Daniel 2020; Taylor and Straub 2020; Thomas
and Daniel 2021) have revealed two key features of wave–
balance exchanges in the small Rossby number regime. First,
there is no universal energy transfer direction between waves
and balanced flows: depending on the kind of wave field and
relative energy levels of wave and balanced flow, waves can
transfer energy to or extract energy from balanced flow (see
Table 2 in Thomas and Daniel 2021). Second, waves severely
modify intrinsic balanced flow dynamics, such as the inverse
energy flux and formation of large-scale coherent vortices,Corresponding author: Jim Thomas, jimthomas.edu@gmail.com
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only when wave energy is significantly higher than balanced
energy. Specifically, waves irreversibly impact balanced flow
in regimes where EG/EW �Ro2, where EG and EW denote
balanced and waves’ energies, respectively, and Ro is the
Rossby number. These findings point out that the balanced
flow is extremely rugged in the small Rossby number regime
and can be perturbed only in the presence of high energy
waves, irrespective of the kind of wave field.

A different scenario for the breakdown of balanced flow
and increased small-scale dissipation of balanced energy is
when the flow Rossby number departs from asymptotically
small values and increases to O(1) values. Such a scenario
happens at oceanic submeoscales, these being flows with lat-
eral scales ranging from 0.1 to 10 km and time scales on the
order of a day. A wide range of in situ and satellite altimeter
datasets along with high-resolution simulations over the past
decade have identified the ubiquitous presence of energetic
submesoscale flows in the world’s oceans, these submesoscale
flows exhibiting significant departures from balanced flow
dynamics and quasigeostrophic turbulence phenomenology
(Lumpkin and Elipot 2010; Shcherbina et al. 2013; Xu and Fu
2011; Capet et al. 2008; Qiu et al. 2014; Brannigan et al. 2015;
Thompson et al. 2016; Buckingham 2016; Poje et al. 2017;
Barkan et al. 2017; Yu et al. 2019; Erickson et al. 2020). It is
noteworthy that even straightforward numerical integration
of ocean models, set in boundary current regions and open
ocean configurations, have found the generation of submeso-
scale dynamics simply by increasing the resolution of the
models (Capet et al. 2008; Brannigan et al. 2015). These ocean
model outputs indicate increased small-scale energy and shal-
lower energy spectra as spatial resolution is increased, result-
ing in a lack of numerical convergence of the ocean model
simulations with gradually increasing spatial resolution.

The widespread relevance of oceanic submesoscale flows
and the limitations of ocean models in fully resolving them
makes it imperative to investigate various phenomenological
aspects of submesoscale flows in different configurations and
understand how they depart from mesoscale dynamics charac-
terized by asymptotically small Rossby numbers. Quasigeo-
strophic turbulence and our understanding of mesoscale eddy
dynamics has reached a mature level, thanks to a wide range
of idealized two-dimensional and three-dimensional studies
that have explored intricate details of turbulent balanced flow
exchanges (McWilliams 1984, 1989; Larichev and Held 1995;
Smith and Vallis 2001; Nadiga 2014). Similar dedicated ex-
ploratory attempts are key to developing insights into the
fluid dynamic aspects ofO(1) Rossby number geophysical tur-
bulence. With these inspirations, in this paper we study a spe-
cific phenomenon: the changes accompanying the turbulent
dynamics of an idealized flow across different Rossby num-
bers, from low Rossby number mesoscale regime to O(1)
Rossby number submesoscale regime.

On examining energy content in vertical modes in the
ocean, theoretical estimates, idealized numerical simulations,
and in situ observations reveal that most of the energy is con-
tained in the barotropic and the first few baroclinic modes (Fu
and Flierl 1980; Wunsch 1997; Smith and Vallis 2001; Zhao
et al. 2018). Despite this, external perturbations such as those

generated by atmospheric winds, eddies interacting with
boundaries, or via spontaneous emission of high Rossby
number coherent structures can lead to the excitation of
high-baroclinic modes (Liang and Thurnherr 2012; Alford
et al. 2013; Gula et al. 2015; Clément et al. 2016; Alford et al.
2016; Gula et al. 2016). While some specialized disturbances,
such as extremely strong atmospheric storms (D’Asaro et al.
2011), can energize high-baroclinic energy levels to a degree
that they are comparable or stronger than the energy content
in the low modes, a wide variety of disturbances lead to config-
urations where the low modes still remain the dominant flow
component with high-baroclinic energy levels being relatively
low. Consequently, constraining the flow to the barotropic and
a high-baroclinic mode gives us an idealized two-vertical-mode
model that can be used to investigate the energetic interaction
between a high-energy barotropic flow and a weak or low-
energy high-baroclinic mode. Although the baroclinic flow re-
mains energetically weak, the strength of the interaction may
be weak or strong depending on the Rossby number of the
flow.

Flows with O(1) Rossby numbers are typically observed
in the upper ocean in weakly sheared eddies, or as eddies
interact with topographic features (Boccaletti et al. 2007;
Shcherbina et al. 2013; Buckingham 2016; Callies et al. 2015;
Yu et al. 2019; Thompson et al. 2016; Gula et al. 2015, 2016).
These commonly observed flows serve as an inspiration for
our investigation in the O(1) Rossby regime, although the
extreme idealization of restricting the primitive equations to
two modes prevents a one-to-one correspondence between
our setup and that of realistic oceanic flows. Within our ideal-
ized setup we will explore how flow structures, energy flow
pathways, and various statistical quantities in physical space
and spectral space change as Rossby number increases from
low toO(1) values.

The plan for the paper is as follows: we present the model
and the parameter regimes in section 2, results in section 3,
and summarize our findings in section 4.

2. The two-vertical-mode model and numerical
integrations

The two-vertical-mode model used for our present study is
obtained by projecting the f-plane primitive equations onto
the barotropic and a single baroclinic mode imposing flat rigid
lid boundary conditions on top and bottom vertical bound-
aries and constant buoyancy frequency. For example, the hor-
izontal velocity field v is expanded in vertical modes as
v(x,z, t)5 vT(x, t)1

��
2

√
cos(npz/H)vC(x, t), where vT and vC

denote the barotropic and the baroclinic horizontal velocity
fields, respectively;H is the depth of the ocean; and cos(npz/H)
is the nth baroclinic mode eigenfunction. Projecting the prim-
itive equations on the barotropic and the nth baroclinic mode
gives a reduced two-dimensional model. The equations so
obtained were then nondimensionalized, choosing the inertial
time scale 1/f (where f is the constant rotation rate) as the
time scale and the horizontal length scale L to be the length
of the domain. An arbitrary velocity scale U was used to non-
dimensionalize velocity fields and the geostrophic balance
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condition using the velocity scale U was used to obtain the scale
for baroclinic pressure ( pC). After nondimensionalizing the
reduced model, we obtain the equations:

­zT
­t

1 Ro∇ 3 [vT · ∇vT 1 vC · ∇vC 1 (∇ · vC)vC]

5 fT 2 nD8zT , (1a)

­vC
­t

1 ẑ 3 vC 1 Bu ∇pC 1 Ro(vT · ∇vC 1 vC · ∇vT)

5 fC 2 nD8vC, (1b)

­pC
­t

1 ∇ · vC 1 Ro(vT · ∇pC) 5 2nD8pC: (1c)

In the variables above, subscripts T and C indicate bar-
otropic and baroclinic fields, respectively; Ro 5 U/fL
represents the Rossby number; and Bu 5 (NH/npfL)2

is the Burger number. The gradient operator above is
∇ 5 (­/­x, ­/­y) and the curl operator shorthand used
above is ∇ 3 v 5 ∇ 3 (u, y) 5 ­y/­x 2 ­u/­y. The baro-
tropic flow is divergence free and is entirely captured by
the barotropic vorticity zT, which is related to the baro-
tropic streamfunction cT via zT 5 ∇ 3 vT 5 DcT. The
terms fT and fC in (1) denote barotropic and baroclinic
forcing terms, respectively, while nD8zT, nD

8vC, and nD8pC
are hyperdissipation terms removing energy reaching
grid scale. In the absence of forcing and dissipation, (1)
conserves the total flow energy�

D

1
2
v2T 1

1
2
v2C 1 Bu

1
2
p2C

( )
dx, (2)

where integration above is performed over the whole domain.
The first term above is the barotropic energy while the re-
maining two terms form the baroclinic energy.

At this point it is worth making a digression to note that
the reduced model (1) was obtained by projecting the primi-
tive equations onto the barotropic and a high-baroclinic mode
assuming rigid lid boundary conditions with vanishing vertical
velocities on the top and bottom vertical boundaries. As
recent work has pointed out, such a projection needs to be
modified in the presence of realistic rough steep bottom to-
pography (de La Lama et al. 2016; LaCasce 2017; LaCasce
and Groeskamp 2020). In realistic oceanographic scenarios
with rough bathymetry, these studies reveal that the dominant
mode is the first baroclinic mode with vanishing bottom hori-
zontal velocity. Consequently, although for the present ideal-
ized study we use the two vertical modes in (1), the model will
need to significantly change to accommodate for more realis-
tic oceanographic situations involving surface intensified flows
and rough bathymetry.

Returning to our study, for the governing equations (1)
we chose a high-baroclinic mode, i.e., n .. 1, making the
Burger number a small parameter, Bu ,, 1. For the numer-
ical integrations, we specifically set Bu 5 0.01. The results
presented in this paper were obtained using 2/3 dealiased

Fourier pseudospectral numerical integration of (1) in a
doubly periodic domain with 5762 grid points. The forcing
terms in (1a) and (1b) were used to generate turbulent
flows in forced-dissipative equilibrium. We chose a forcing
scheme that maintains a constant energy level at low wave-
numbers. For the barotropic flow, we forced the low wave-
number band k ∈ (0, kf] with kf 5 5 such that the total
energy contained in the forced scales (0, kf] was enforced to
be 1. For the baroclinic flow, notice that in (1b) and (1c), in
the absence of the nonlinear interaction terms, we are left
with the linear time evolving equations, whose solution
consists of linear waves and a geostrophic balanced mode.
The k 5 0 spatially homogeneous mode is the inertial oscil-
lation mode. We chose the baroclinic forcing such that the
inertial oscillation mode was forced and maintained with
energy 0.1. The forcing was therefore chosen such that the
baroclinic flow is a small perturbation and 90% of the
large-scale flow energy was contained in the barotropic
flow. We refer the reader to the appendix for technical de-
tails of the forcing term.

The forcing scheme that maintains large-scale energy of
the flow to be constant has been used in multiple turbu-
lence studies in the past (Kaneda and Ishihara 2006; Donzis
and Yeung 2010) and has notable advantages. Specifically,
the forcing scheme avoids the flow to evolve in a specific
way by enforcing a predetermined energy injection rate for
the system. If there is an inverse flux of energy, transferring
flow energy to large scales, the energy at large scales tends
to increase and therefore to maintain same level of energy
at large scales, forcing acts as an energy sink. On the other
hand, if the flow exhibits a forward energy flux depleting
energy from large scales, the forcing energizes large scales
by acting as an energy source. Since the rate of energy
transfer from large to small scales at different Rossby num-
bers is not known a priori, we used the above forcing in our
study.

Our forcing scheme ensured that an energetically dominant
barotropic flow was forced and maintained at large scales,
while low-energy spatially homogeneous inertial oscillations
were forced as a small perturbation. The inertial oscillations
would interact with the barotropic flow and generate spatial
scales comparable to that of the barotropic flow; see detailed
discussion of this process in Thomas et al. (2017). For a com-
parison with our setup in the present study, the model (1) was
used by Thomas and Arun (2020) to examine interactions be-
tween inertial oscillations and balanced flow in the small
Rossby limit. Thomas and Arun specifically focused on the
case where baroclinic mode had significantly higher energy
levels than the barotropic mode, a parameter regime inspired
by strong atmospheric winds exciting high-energy inertial os-
cillations in the upper ocean. In contrast, the present study ex-
plores the opposite regime, where the high vertical mode
baroclinic flow is a small perturbation to the barotropic
flow}a common scenario in the ocean}and the emphasis is
on understanding how the low-energy baroclinic flow will
modify the dynamics of the barotropic flow as the Rossby
number increases.
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3. Turbulent transition from small to O(1)
Rossby numbers

We used numerical solutions of (1) to study the flow dy-
namics across different Rossby numbers. By forcing and
maintaining low wavenumber energy as explained in the pre-
vious section, we integrated (1) with different Ro values,
changing Ro from 0.1 to 1 at increments of 0.01, providing us
with 91 flows characterized by a specific Ro value. Each flow,
with a specific Ro, was evolved for about thousand eddy turn-
over time scales and was checked for forced-dissipative equi-
librium, by ensuring that the barotropic and baroclinic
energies, flow energy spectra, and all other statistical quanti-
ties presented in this paper reached a steady state. Out of the
91 flows, 14 did not reach equilibrium and were discarded.
We therefore studied the transition from low to high Rossby
numbers using the remaining 77 equilibrated flows.

Although Ro is the parameter that we varied to generate
different Rossby number flows and the parameter explicitly
appears in (1), we may unambiguously define the effective
Rossby number of each flow as Roeff 5 RozRMS, zRMS being
computed as the time-averaged root-mean-square value of
the nondimensional barotropic vorticity. (It is worth noting
that based on our nondimensionalization, the barotropic vor-
ticity is nondimensionalized by U/L to obtain the nondimen-
sional vorticity z.) Hereafter we will refer to each flow by its
effective Rossby number, Roeff. Based on this definition, for the
lowest Rossby number flow, equilibrated by setting Ro 5 0.1
in (1), we obtained Roeff 5 0.29 while for the highest Rossby
number case where we set Ro5 1, we obtained Roeff 5 3.41.

Out of the 77 cases, Fig. 1 shows snapshots of barotropic
vorticity zT (left column) and baroclinic speed

�����������√
u2C 1 y2C

(right column) for three flows with effective Rossby numbers:
Ro1 5 0.29, Ro2 5 1.32, and Ro3 5 3.41. For the lowest
Rossby number flow shown in Fig. 1a, the barotropic flow is
seen to consist of large-scale cyclonic (positive) and anticy-
clonic (negative) coherent vortices, with like-signed vortices
merging further to grow in size. On increasing Rossby num-
ber, large-scale vortices break up into smaller fragments that
span the entire domain. This feature can be seen in the inter-
mediate Rossby number flow shown in Fig. 1c. At the highest
Rossby number case shown in Fig. 1e, the domain is rich with
a lot of fine-scale structures, along with smaller-scale vortices.
Notice that the number and size of coherent vortices de-
creases from top to bottom, as Rossby number is increased.
The decrease in size of flow features can also be seen in the
right column of Fig. 1, showing baroclinic speed. At the lowest
Rossby number, the baroclinic flow has large-scale structures,
which breaks down into fine-scale flow features spread through-
out the domain as Rossby number is increased. The physical
structures seen in Fig. 1 is complemented by energy spectra of
barotropic and baroclinic flow components shown in Fig. 2. Con-
comitant with the generation of smaller-scale features in the
flow fields, the energy spectrum of both barotropic and baro-
clinic modes becomes shallower with increasing Rossby number.
Notably, the barotropic spectrum shown in Fig. 2a has a slope
close to 23 at low Rossby numbers, which changes to a shallow
slope close to25/3 at the highest Rossby number.

On comparing the energy spectrum of the barotropic and
baroclinic fields in the top row of Fig. 2, it can be seen that the
low wavenumber part of the energy spectrum, which contains
most of the energy, has relatively lesser energy content for
the baroclinic flow. This trend, however, reverses at smaller
scales, as seen in Fig. 2c showing the barotropic to baroclinic
energy ratio across wavenumbers: notice that although at
large scales the ratio is much greater than 1, the ratio drops
below 1 at smaller scales. The domain-integrated energy con-
tent in the two flow fields is quantified in Fig. 2d, which shows
the barotropic and baroclinic energies of all the flows as a
function of effective Rossby number. Since most of the energy
is contained in large scales and since barotropic energy domi-
nates over baroclinic energy at large scales, domain-
integrated energy of the barotropic flow is about 8–10 times
higher than that of the baroclinic flow. This feature can also
be qualitatively inferred from the physical structure plots
shown in Fig. 1}notice the color bars of the figures on the
left and right}the baroclinic flow structures are weaker than
the barotropic flow structures.

Recall that the forcing scheme we used ensured that the
barotropic energy was maintained at 1 at large scales and bar-
oclinic energy was 0.1 in the inertial oscillation mode. The
forced inertial oscillation mode interacts with the barotropic
flow and generates k . 0 wavenumbers in the baroclinic flow.
Therefore, although large-scale barotropic energy was forced
and maintained to be much higher (90% of total energy) than
the baroclinic energy, as the flows develop fine-scale features
and transfer energy to smaller scales, this ratio could change.
Nevertheless, Fig. 2d shows that the baroclinic energy is con-
sistently an order of magnitude lower than barotropic energy,
implying that the barotropic flow remains the dominant flow
component across Rossby numbers. Despite being energeti-
cally weak compared to the barotropic flow, the low-energy
baroclinic flow is responsible for the significant changes in
barotropic flow seen in the left column of Fig. 1.

To get a handle on the constituents of the energetically
weak baroclinic flow, we decomposed it into inertia–gravity
waves and geostrophically balanced mode using the linear
wave-balance decomposition used in Thomas and Yamada
[2019, their Eq. (2.12)] and Thomas and Arun [2020, their
Eqs. (8) and (9)]. Figure 3 shows the frequency spectrum of
wave (blue) and balanced (red) components. For the lowest
Rossby number case shown in Fig. 3a, a clear separation can
be seen between waves and balanced components. Notice
how the balanced red spectrum dominates at low frequencies
while the blue wave spectrum overtakes the balanced spec-
trum, around the inertial peak marked by a dashed vertical
line and remains the dominant component at higher frequen-
cies. In contrast, at the highest Rossby number case shown in
Fig. 3b, no distinct separation is seen between wave and bal-
anced modes. Additionally, in the high Rossby number case,
the frequency spectrum of the balanced component is shal-
lower and does not decay as rapidly as in the low Rossby
number case shown in Fig. 3a. On further examining the fre-
quencies of specific wavenumbers of the wave field (figures
omitted), the wave component in the low Rossby regime was
seen to have energy concentrated along frequencies dictated
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FIG. 1. (left) Barotropic vorticity and (right) baroclinic speed for three different Rossby numbers. Rossby number
increases from top to bottom.
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by the dispersion relationship of inertia–gravity waves,
v(k)5 �������������

11 Buk2
√

In contrast, high Rossby number wave
component was seen to depart from the linear wave dispersion
relationship, implying that even though the linear wave-balance
decomposition provides us with a “wave” component, that com-
ponent do not correspond to linear inertia–gravity waves. These
details point out that separating fast linear waves from slow bal-
anced mode using the linear decomposition breaks down at high
Rossby numbers. Overall, despite the baroclinic flow being ener-
getically weak and its energy levels not changing appreciably on
increasing Rossby number, the nature of the flow changes from
being a separable mixture of fast waves and a slow balanced
component at low Rossby numbers to a high-frequency insepa-
rable mixture of balance and waves in theO(1) Rossby limit.

Returning to the flow features in physical space, oceanic
observations of submesoscale dynamics typically find a pro-
nounced cyclone–anticyclone asymmetry, with a dominance
of cyclonic vorticity structures (Rudnick 2001; Shcherbina
et al. 2013; Buckingham 2016). This feature is qualitatively
seen in the left column of Fig. 1. The lowest Rossby number
flow shown in Fig. 1a is composed of more or less the same
number of cyclonic and anticyclonic vortices. In contrast,
on closely examining Figs. 1c and 1e, smaller-scale cyclonic

coherent vortices (red color) are seen to float in an incoherent
soup of anticyclonic (blue color) vorticity regions. Although
the size of cyclonic coherent vortices decreases with increasing
Rossby number, cyclonic vortices remain rugged and persist
while anticyclonic coherent vortices start disappearing with in-
creasing Rossby number. Figure 4a quantifies the difference
between cyclonic and anticyclonic vorticity structures based on
the kurtosis. We divided the domain into positive and negative
vorticity regions and computed the kurtosis for both positive
and negative vorticity regions separately based on the expres-
sion (McWilliams 1984; Remmel and Smith 2009):

Kurt 5
〈z4T〉

(〈z2T〉)2
, (3)

where angle brackets above denote integrating over the do-
main. Kurtosis is in general higher for flows with coherent
structures when compared with flows that have no coherent
structures (McWilliams 1984). In Fig. 4a, notice that on mov-
ing from low to high Rossby numbers, red markers keep mov-
ing above blue markers, indicating that cyclonic vortices have
higher kurtosis and remain more coherent in comparison to
anticyclonic vortices that have relatively lower kurtosis values

FIG. 2. Energy spectrum of (a) barotropic flow and (b) baroclinic flow for three different Rossby numbers. (c) Ratio
of barotropic to baroclinic energy ratio across wavenumbers. (d) Total barotropic (red) and total baroclinic (blue)
energy as a function of Rossby number.

J OURNAL OF PHY S I CAL OCEANOGRAPHY VOLUME 522614

Authenticated cgarrison@ametsoc.org | Downloaded 10/17/22 01:31 PM UTC



and become incoherent. To further highlight the differences
in positive–negative vorticity distributions on increasing Rossby
number, Fig. 4b shows histograms of barotropic vorticity for
three different Rossby numbers. To make the comparison be-
tween different Rossby number cases straightforward, we nor-
malized the frequencies by the maximum frequency for each
case, so that the highest frequency of the histogram is 1 for each
case (notice that all three histograms meet at 1 on the y axis).
While the vorticity field is symmetric at the lowest Rossby num-
ber case indicated by the red curve, the histograms become
asymmetric at higher Rossby numbers. The skewness of the
vorticity fields was seen to monotonically increase with
Rossby number as 0.002, 0.06, and 0.15, with the vorticity
field being least skewed at the lowest Rossby number case
and maximum skewed at the highest Rossby number case.
On examining Fig. 4b it can be inferred that for all three
cases the high-frequency, low-vorticity parts are more or less

symmetric, implying that the weak background vorticity
field, in which strong isolated vorticity structures float, ex-
hibit less asymmetry. In contrast, the low-frequency tails of
the histograms in Fig. 4b, exhibit a high level of asymmetry.
It is seen that the extreme values of positive vorticity are
almost double the extreme values of negative vorticity for
the highest Rossby number case (black curve). These ex-
treme values primarily correspond to spatially intermittent
cyclonic coherent vortices seen in the left panel of Fig. 1.
Therefore, with increasing Rossby number, cyclonic vortices
remain coherent and take up higher vorticity values while
anticyclonic vortices lose coherence and remain in the back-
ground with relatively lower extreme vorticity values.

Our analysis so far examined the properties of barotropic
and baroclinic flows separately. To see the interconnection
between the two flows, we will now examine the spatial corre-
lation between barotropic and baroclinic fields. For this we

FIG. 3. Frequency spectrum of wave (blue) and balanced (red) fields for the (a) lowest Roeff and (b) highest Roeff.

FIG. 4. (a) Kurtosis of cyclonic (red) and anticyclonic (blue) barotropic vorticity. (b) Histogram of barotropic vortic-
ity zT for three different Rossby numbers. (c) Spatial correlation between barotropic and baroclinic flows based on
Eq. (5).
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computed the correlation between the pointwise baroclinic
energy

eC 5
v2C
2

1 Bu
p2C
2

(4)

and the barotropic vorticity zT as

C 5
〈zTeC〉�����������
〈z2T〉〈e2C〉

√ : (5)

The above correlation coefficient is plotted in Fig. 4c as a
function of Rossby number. Observe that at low Rossby num-
bers the correlation is negative, indicating that baroclinic en-
ergy has an affinity for anticyclonic vortices. This feature can
be seen on comparing the physical structures in Figs. 1a and 1b.
Notice that the big red patches of baroclinic flow seen in Fig. 1b
corresponds to anticyclonic (blue regions) in Fig. 1a. As seen in
Fig. 4c, on increasing Rossby number the correlation coefficient
moves closer to 0. At high Rossby numbers, as discussed above,
anticyclonic vortices are destroyed, resulting in no clear correla-
tion between anticyclonic barotropic vortices and baroclinic
flow fields.

a. Spectral fluxes of barotropic and baroclinic modes

We will now examine energy transfers across scales for the
barotropic and baroclinic fields. Applying a Fourier transform
to the governing equations (1) and manipulating the resulting
equations gives us energy equations for barotropic and baro-
clinic fields at each wavenumber k [see the procedure
described in Thomas and Yamada (2019), for example].
Summing the equations so obtained from the maximum re-
solved wavenumber kmax to an arbitrary wavenumber k
gives the energy flux equations for the barotropic and baro-
clinic flow as

­ÊT(k, t)
­t

5 PTTT(k, t) 1 PTCC(k, t)︸������������︷︷������������︸
PT

1 F̂T(k, t) 2 D̂T(k, t),

(6a)

­ÊC(k, t)
­t

5 PC(k, t) 1 F̂C(k, t) 2 D̂C(k, t): (6b)

In the above equations, ÊT(k, t) and ÊC(k, t) are barotropic
and baroclinic energies contained in the wavenumber band
(k, kmax), while F̂T and F̂C are the forcing, and D̂T and D̂C
represent the dissipation contained in the same wavenumber
band. The barotropic flux above is represented by PT while
the baroclinic flux is denoted by PC. The barotropic flux is
further divided into two parts: a part that is due to triadic bar-
otropic interactions alone (PTTT) and a part that is due to
joint barotropic–baroclinic triads (PTCC).

The flux terms given in (6) are shown in Fig. 5 for the same
three Rossby numbers explored earlier. The barotropic flux
PT shown in Fig. 5a reveals that the magnitude of the flux in-
creases with increasing Rossby number. At low wavenumbers
the flux is negative, while in the inertial range, k ∈ (10, 100), it

is positive. Positive barotropic flux in the inertial range im-
plies that the barotropic energy is being transferred down-
scale, eventually getting dissipated. Furthermore, from Fig. 5a
it is clear that the forward flux increases with Rossby number,
with the flux being weakest in the inertial range for Ro1 (red
curve) and being the strongest for the highest Rossby number
case Ro3 (black curve). Consequently, on moving from top to
bottom in the left column of Fig. 1, the generation of small-
scale features in the barotropic flow and shrinking in size of
coherent vortices goes hand in hand with an increasingly
strong forward flux of barotropic energy.

To explore the barotropic flux in more detail, the two com-
ponents of the barotropic flux given in Eq. (6a), PTTT and
PTCC are plotted in Figs. 5b and 5c, respectively. Notice that
although the barotropic flux is constant and is represented by
a straight line in the inertial range in Fig. 5a, its constituents
PTTT and PTCC exhibit a certain level of variability in the in-
ertial range. Figure 5b shows that PTTT is negative, primarily
at low wavenumbers, in addition to taking slightly negative
values in the inertial range. Additionally, the PTTT flux com-
ponent does not change appreciably with increasing Rossby
number. The triadic barotropic interactions therefore assist in
the upscale transfer of barotropic energy, with rates that are
more or less comparable at different Rossby numbers. In con-
trast to thePTTT component, thePTCC flux component shown
in Fig. 5c is positive throughout the inertial range, with magni-
tude increasing with Rossby number. PTCC is negligible at the
lowest Rossby number case (red curve) and reaches largest
value at the highest Rossby number case (black curve). Since
the PTTT component is insignificant in the inertial range, as
seen in Fig. 5b, the positive flux value in the inertial range
seen in PT in Fig. 5a is entirely due to the PTCC flux compo-
nent. Therefore, although the baroclinic energy is much less
than the barotropic energy across different Rossby numbers,
the baroclinic flow plays the dominant role in facilitating the
forward energy flux of the barotropic flow.

In addition to the PTCC flux component being positive in
the inertial range, as can be seen in Fig. 5c, PTCC is negative
at low wavenumbers. Notice that PTTT goes to zero at the
lowest wavenumber in Fig. 5b, while PTCC in Fig. 5c does not.
This implies that the baroclinic flow, in addition to catalyzing
the forward flux of barotropic energy, also extracts some of
the barotropic energy. The energy transfer from barotropic to
baroclinic mode is extremely small at low Rossby number
(notice that the red curve in Fig. 5c meets the y axis at a value
slightly below zero) but increases monotonically with increas-
ing Rossby number. Since in our numeral integrations we
forced the inertial oscillation mode of the baroclinic flow, the
baroclinic flow is energized through two separate sources:
direct forcing and energy transfer from barotropic flow. Along
the same lines, the barotropic flow loses its energy by two
means: energy loss to the baroclinic flow and small-scale dissi-
pation at viscous scales. Since the energy transfer from baro-
tropic to baroclinic mode is a transfer from a low to a high
vertical wavenumber mode, this transfer is essentially a for-
ward energy flux in the vertical wavenumber space restricted
to two wavenumbers within our idealized setup.
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Complementary to the barotropic flux, Fig. 5d shows the
baroclinic energy flux PC for three different Rossby numbers.
PC is seen to be positive and constant in the inertial range,
with magnitude increasing with Rossby number. The baro-
clinic flow, just like the barotropic flow, undergoes a forward
energy flux whose strength monotonically increases with
Rossby number. Additionally, as can be seen in Fig. 5d, PC is
positive at the lowest wavenumber, since as explained earlier,
the baroclinic flow is fed through direct forcing and energy
transfer from the barotropic flow. Therefore, the baroclinic
flow, fed through two different means, fluxes energy down
scale and dissipates at the viscous scales; the strength of the
process increasing with increasing Rossby number and being
accompanied by the generation of finer-scale features in the
baroclinic flow seen in the right column of Fig. 1.

b. Flux distribution in physical space

The spectral fluxes examined above clarifies energy transfer
across scales for the flow. At higher Rossby numbers both
barotropic and baroclinic flow fluxes energy downscale and
the forward energy flux becomes stronger with increasing
Rossby number. Despite spectral fluxes revealing vital infor-
mation regarding energy transfers across scales, it is still un-
clear where in physical space the downscale energy transfers
take place. For instance, gleaning from top to bottom of Fig. 1
that shows shrinking barotropic coherent vortices and generation
of finer-scale features in the flow, it would be beneficial to under-
stand the spatial structure of the forward energy flux with regard
to the locations of the coherent vortices.

To identify locations where the forward energy flux of the
flow dominates, we will now construct the energy flux equa-
tion in physical space. For this we applied a high-pass wave-
number filter on the flow fields. We define filtered variable
c̃(x, k̃) as the streamfunction field restricted to scales greater
than or equal to a cutoff scale L̃ 5 2p/k̃. The c̃ is therefore ob-
tained by a spectral filter that removes all components of the
c that are larger than the cut off scale L̃ or wavenumbers lower
than k̃, i.e., c̃ 5 F21[ĉ(k$ k̃)], where ĉ is the Fourier trans-
form of c, and F21 denotes the inverse Fourier transform. We
apply the spectral filter to the governing equations (1) to get

­z̃T
­t

1 Ro∇ 3 [ ṽT · ∇vT 1 ṽC · ∇vC 1 (̃∇ · vC)vC]
5 f̃ T 2 nD8z̃T , (7a)

­ṽC
­t

1 ẑ 3 ṽC 1 Bu∇p̃C 1 Ro( ṽT · ∇vC 1 ṽC · ∇vT)

5 ~fC 2 nD8ṽC, (7b)

­p̃C

­t
1 ∇ · ṽC 1 Ro ṽT · ∇pC 5 2nD8p̃C: (7c)

Above equations govern the evolution of flow variables
constrained to scales smaller than L̃. To get energy equation
of the flow for scales smaller than L̃, we multiply (7a) by
2c̃T , dot (7b) with ṽC, multiply (7c) with p̃C, and sum them
up. After manipulating the terms by moving derivatives
around, we get

FIG. 5. (a) The barotropic flux PT and its decomposition into two components, (b) PTTT and (c) PTCC.
(d) Baroclinic flux PC. Fluxes are shown for three different Rossby numbers. The red curves, corresponding to the
lowest Rossby number, have the least flux while the black curves, corresponding to the highest Rossby number,
have the largest flux.
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­

­t
1
2
ṽ2T 1

1
2
ṽ2C 1

1
2
Bu p̃2

C

( )
5 ∇ · M1 1 ∇ 3 M2 1 ∇ · M3

1 P̃T 1 P̃C 1 F̃ 2 D̃, (8)

where

M1 5 2Bu p̃CṽC 1 c̃T∇
­c̃T

­t
, (9a)

M2 5 Ro c̃T[ ṽT · ∇vT 1 ṽC · ∇vC 1 (̃∇ · vC)vC], (9b)

M3 52Ro[ỹTi( ỹTivT 1 ỹCivC) 1 ỹCi( ỹTivC 1 ỹCivT)
1 Bu p̃C (̃pCvT)], (9c)

P̃T 5 Ro
1
2

­ỹTi
­xk

1
­ỹTk
­xi

( )
ỹTiyTk, (9d)

P̃C 5 Ro
1
2

­ỹTi
­xk

1
­ỹTk
­xi

( )
ỹCiyCk 1 Ro

1
2

­ỹCi
­xk

1
­ỹCk
­xi

( )

3 ( ỹTiyCk 1 ỹCiyTk) 1 Ro ỹCi ỹTi
­yCk
­xk

( )

1 RoBu (̃pCyTk)
­ p̃C
­xk

: (9e)

For convenience we used the index notation in the expres-
sions in (9), with yi being the ith component of the vector v
and repeated indices imply summation over that index.

In Eq. (8), the left-hand side is the rate of change of flow
energy contained in scales equal to and smaller than L̃ and
the right-hand side contains terms responsible for the change,
which are expanded in (9) [we refer readers not acquainted
with equations like (8) to chapter 13 of Pope (2000) for deri-
vation of similar equations via filtering]. Integrating (8) over
the entire domain, the left-hand side becomes the time rate of
change of total energy contained in scales smaller than L̃,
while the first three terms on the right-hand side vanish since
they contain divergence and curl of vectors. Barring the con-
tribution from the forcing and dissipation [expressed by the
last two terms of (8)], the fourth and fifth terms on the right-
hand side of (8)} P̃T and P̃C }are the terms responsible for
transferring energy across scales. It is important to keep in
mind that (8) captures the rate of change of total flow energy.
Consequently, P̃T 1 P̃C in (8) represents the total flow en-
ergy flux in physical space, with P̃T being flux contribution to
the barotropic component alone while P̃C is the flux contribu-
tion involving both barotropic and baroclinic modes. Equation (8)
therefore is equivalent to the physical space representation
of the sum of the barotropic and baroclinic energy flux equa-
tions given in (6). We examined P̃T and P̃C across the inertial
range for different Rossby numbers. At all Rossby numbers,
the energy flux involving barotropic modes alone, P̃T , was
seen to be small in magnitude and negative in sign, implying
that the barotropic modes by themselves were inducing a
weak inverse energy flux of the flow. In contrast, the energy
flux involving baroclinic flow, P̃C, was seen to be positive in

sign with its magnitude increasing monotonically with Rossby
number. These inferences are qualitatively similar to those in-
ferred from spectral space transfers based on Fig. 5, i.e., the
barotropic triads induce a weak inverse energy flux while the
flux involving the baroclinic term induces a forward energy flux
whose strength increases monotonically with Rossby number.
We will therefore take a closer look at the spatial structure of
P̃C, this being the specific flux term that is responsible for the
forward flux of the flow energy.

For the broad set of Rossby number flows discussed earlier,
we examined P̃C by choosing different filter wavenumber k̃
(or filter scale L̃). A specific example of the spatial structure
of the flux is given in Fig. 6a, where P̃C normalized by its spa-
tially integrated value, 〈P̃C〉, is shown for the highest Rossby
number flow, Ro3, with the filter wavenumber k̃ 5 40 (as can
be seen from the energy spectra shown in Fig. 2, this corre-
sponds to the middle of the inertial range, sufficiently far
from forcing and dissipative scales). Observe in Fig. 6a that
the flux is spatially intermittent and patchy, taking up both
positive and negative values in physical space. Furthermore, as
can be gleaned from the histogram of the flux shown in Fig. 6b,
extreme values of flux (positive and negative) have low fre-
quency. Nevertheless, from Fig. 6b it can be seen that the ex-
treme positive values of flux are more frequent than extreme
negative values of flux (notice that the black curve on the posi-
tive side goes up to 2 on the x axis, while the curve falls off rap-
idly well before 22). This skewed flux with higher positive flux
values in the domain results in the net flux integrated over the
domain being positive, i.e., 〈P̃C〉. 0, indicating that the flow
energy is transferred from large to small scales.

To get a handle on regions in physical space where the flow
energy is fluxed downscale, we partitioned the flow domain
into different regions based on the Okubo–Weiss criterion
(Okubo 1970; Weiss 1991), this decomposition being com-
monly used in the oceanography (Shcherbina et al. 2013;
Chelton et al. 2007; Isern-Fontanet et al. 2006). For a flow
velocity field (u, y), if we define the normal strain rate as
sn 5 ­u/­x2 ­y/­y and shear strain rate as ss 5 ­y/­x1 ­u/­y,
the total strain rate is s 5

�����������
s2
n 1 s2

s

√
. Based on flow vorticity

z 5 ­y/­x 2 ­u/­y, we may partition the flow domain as strain-
dominant regions, s . |z|, and vorticity-dominant regions,
s , |z|. Since the number of points that satisfied the exact
equality s 5 |z| were insignificantly small, we ignored such
points to keep strict inequalities s . |z| and s , |z|.

For the highest Rossby number flow, Figs. 6c and 6d shows
the spatial structure of total strain rate and vorticity of the
barotropic flow, respectively, computed at the same instant at
which the flux in Fig. 6a was computed. On comparing the
strain and vorticity fields shown in Figs. 6c and 6d, it can be
seen that strain takes up extremely large values in vortex pe-
ripheries, regions outside vortex cores. In contrast, vortex
cores, seen with “holes” in Fig. 6c, are regions where strain is
weak and vorticity dominates. Of course, as can be seen from
Figs. 6c and 6d, strain rate and vorticity field do take up sparse
high values away from vortex structures, implying that there
are small, localized regions located away from vortices where
strain rate dominates over vorticity and vice versa. Nevertheless,
on comparing pointwise strain rate and vorticity field at different
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times, above observation was seen to be a generic feature. A sig-
nificant portion of strain-dominant regions (sT. |zT|) are vortex
peripheries while vortex cores are regions of vortex dominance
(sT , |zT|).

To get a grip on the flux distribution in physical space, com-
pare Figs. 6a, 6c, and 6d. Notice that the flux takes up higher
values in vortex peripheries, outside vortex cores, where
strain rate dominates over vorticity. In fact, on closely staring
at Fig. 6a, the reader will notice holes in the flux field, corre-
sponding to physical locations of the vortex cores in Fig. 6d,
which are regions that appear as holes in the strain rate shown
in Fig. 6c. To quantify flux distribution in physical space based
on the strain-vorticity criterion, we spatially integrated P̃C
constrained to strain-dominant regions (sT . |zT|) and vorticity-
dominant regions (sT , |zT|) and found that the former
accounted for 61.5% of the flux while the latter constituted only
38.5% of the net flux. Therefore, the dominant fraction of the
forward energy flux is based on strain-dominant regions, away

from vortex cores. Alternatively, vortex cores are regions of
minimal net forward energy flux, the coherent structures be-
ing shielded from losing their energy to smaller dissipative
scales.

The specific quantitative inferences made above are for the
highest Rossby number case Ro3. Nevertheless, the qualita-
tive features described above were robustly seen for other
O(1) Rossby number flows as well. On moving from asymp-
totically small to O(1) Rossby numbers, the forward flux term
P̃C strengthens and a major fraction of the forward energy
flux (generically more than 60%) takes place in strain domi-
nated regions. Since the baroclinic flow plays a key role in the
forward energy flux, via the P̃C term, it is useful to examine
the distribution of the pointwise baroclinic energy eC with re-
spect to the strain-dominant and vorticity-dominant regions.
We therefore computed spatially integrated eC [see expres-
sion in Eq. (4)] constrained on strain-dominant and vorticity-
dominant regions. The results shown in Fig. 7a indicate that

FIG. 6. (a) Spatial structure of normalized flux P̃C/〈P̃C〉. (b) Histogram of P̃C/〈P̃C〉, corresponding to the flux
shown in (a). The red dashed line indicates the mean of the normalized flux. The inset shows a smaller part of the his-
togram, highlighting the mean of the normalized flux. (c) Spatial structure of barotropic strain rate sT. (d) Spatial
structure of barotropic vorticity zT. Panel (d) is the same as Fig. 1e, shown here for easier comparison between spatial
structure of vorticity, strain rate, and flux.

T HOMA S AND V I S HNU 2619NOVEMBER 2022

Authenticated cgarrison@ametsoc.org | Downloaded 10/17/22 01:31 PM UTC



although at low Rossby numbers the contributions from the
two regions are comparable, on increasing Rossby number, a
relatively higher level of baroclinic energy is associated with
strain-dominant regions in physical space. Recall that at low
Rossby numbers the baroclinic flow has an affinity for anticy-
clonic barotropic vortices (as can be seen in the first row of
Fig. 1). AtO(1) Rossby numbers, with anticyclonic barotropic
vortices being destroyed, higher concentration of baroclinic
flow shifts to barotropic strain-dominant regions, outside cy-
clonic vortex cores (as can be seen in the last row of Fig. 1).
On comparing spatial structure of small-scale dissipation, sim-
ilar to the spatial structure of flux, we found that the major
fraction of flow dissipation was in strain-dominant regions,
with high dissipation values being observed in vortex periph-
eries. Therefore, with increasing Rossby number, the baro-
clinic flow migrates to regions outside vortex cores and
strengthens the forward flux of flow energy, disintegrating pe-
ripheries of vortices and shrinking size of coherent vortices, as
seen in the left column of Fig. 1, thereby enhancing small-
scale dissipation in those regions.

At this point we remind the reader that the flux equation
(8) is for the total flow energy. Starting from the spatially fil-
tered equations (7), it is straightforward to construct separate
flux equations in physical space for the barotropic and baro-
clinic energy. We examined spatial structure of fluxes for the
barotropic and baroclinic energy based on such equations
(figures omitted) and found details similar to that mentioned
above and gleaned from Fig. 6. The forward energy fluxes of
both barotropic and baroclinic flow are generically dominant
in regions where barotropic strain rate dominates over baro-
tropic vorticity, these being regions where baroclinic energy
levels are high.

Much of the detailed diagnosis described above requires high-
resolution spatiotemporal data that are difficult to obtain from
typical oceanic observational campaigns. Nevertheless, Yang
et al. (2017) is a recent work that compares properties of the
flow in eddy core and eddy periphery regions with an eye on
submesoscale dynamics. On exploring properties of multiple co-
herent eddies in South China Sea, they found that small-scale
features (shallower energy spectrum), forward energy flux, and
small-scale mixing was much more enhanced in eddy peripheries
when compared with eddy core regions. While the sparse data-
sets they had access to prevented more detailed diagnosis, the

key inferences of Yang et al. are qualitatively similar to our find-
ings discussed above. That is, the eddy peripheries are regions
of higher concentration of energetic small-scale flow structures,
stronger forward energy flux, and enhanced small-scale dissipa-
tion when compared to eddy core regions.

c. Monotonic increase in small-scale dissipation

Returning to the spectral fluxes shown in Figs. 5a and 5d,
notice that the barotropic and baroclinic forward flux in the
inertial range increases with increasing Rossby number, sug-
gesting that higher amounts of energy are flowing through the
system. To confirm this, Fig. 7b plots barotropic dissipation,
baroclinic dissipation, and total energy injection rate. The to-
tal energy injection rate is the sum of energy injection rate
into the barotropic and baroclinic modes and is equal to
the sum of barotropic and baroclinic dissipation in forced-
dissipative equilibrium. As mentioned earlier, the baroclinic
flow is energized through direct external forcing and energy
transfer from the barotropic flow, due to which baroclinic dis-
sipation (blue curve) is more than barotropic dissipation (red
curve) in Fig. 7b. Observe the monotonic increase in all three
quantities with increasing Rossby number in Fig. 7b. We re-
mind the reader once again that our forcing scheme does not
impose a fixed rate of energy injection; energy at large scales
are forced and maintained, and the system decides the energy
flow rate through the system at different Rossby numbers.
Given this, it is interesting that larger and larger amount of
energy flows through the system with increasing Rossby num-
ber. More striking is this result in comparison to the result
seen in Fig. 2d: although more and more energy flows through
the system, the energy levels of barotropic and baroclinic
modes do not change appreciably. The increased drawing of
energy into the system is compensated by increased dissipa-
tion at small scales, resulting in more or less same flow energy
levels at different Rossby numbers.

4. Summary and perspectives

Oceanic flows typically contain a major fraction of their en-
ergy in low vertical modes, while various forms of external
perturbations can generate low-energy, high-baroclinic flow
disturbances. Although the high-baroclinic disturbances may
have low energy levels, the interaction between the low and

FIG. 7. (a) Fractional baroclinic energy in strain dominated (red) and vorticity dominated (blue) regions. (b) Barotropic
dissipation (red), baroclinic dissipation (blue), and total energy injection rate (black).
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high modes may be weak or strong depending on the flow
Rossby number. To investigate energetic interactions and tur-
bulent flow dynamics of an O(1) flow being capable of sus-
taining large-scale coherent structures with a weak high mode
disturbance across different Rossby numbers, we idealized
the interaction problem by restricting the flow components to
an energetic barotropic mode and a single low-energy, high-
baroclinic mode. Ignoring inertia–gravity waves and other
ageostrophic components, two-vertical-mode models have
been extensively used in the past in connection to geostrophic
turbulence (Salmon 1998; Larichev and Held 1995). As an ex-
tension, recent works have used such reduced models to ex-
plore how inertia–gravity waves modify geostrophic turbulence
in the small Rossby number regime (Thomas and Yamada
2019; Thomas and Arun 2020). Inspired by observations of en-
ergetic submesoscale flows with O(1) Rossby numbers in the
ocean, in the present work we explored the changes in flow
structures and energy flow pathways as Rossby number was
gradually increased from asymptotically small toO(1) values.

To set up the flow at different Rossby numbers, we used a
specialized setup where large-scale flow energy was forced
and maintained to be a constant. The large-scale barotropic
flow, at wavenumbers k # 5, was maintained to have unit en-
ergy while the spatially homogeneous inertial oscillation
mode of the baroclinic flow was forced and maintained at an
energy 0.1. Using such a setup ensured that we did not impose
a fixed energy injection rate on the system; rather we let the
system choose the energy injection rate based on the energy
flow rate through the system at different Rossby numbers.
We then numerically integrated the governing equations to
generate 77 flows in forced-dissipative equilibrium, with Rossby
number varying from asymptotically small values to O(1)
values.

The inertial oscillation mode of the baroclinic flow, which
was externally forced and maintained, interacted with the
barotropic flow and generated a spatially inhomogeneous bar-
oclinic flow field at all Rossby numbers. At low Rossby num-
bers, the barotropic flow exhibited an inverse energy flux and
organized itself into large-scale coherent vortices while the
baroclinic flow fluxed energy downscale. The baroclinic flow
was also seen to be concentrated in anticyclonic barotropic
vortices. The barotropic flow modified the dynamics of the
baroclinic flow, along with a weak barotropic to baroclinic en-
ergy transfer. In contrast, with increasing Rossby numbers,
the barotropic and baroclinic flow were rich with energetic
small-scale structures, shallower energy spectra, and forward
energy flux.

At low Rossby numbers, we observed symmetric distribu-
tion of cyclonic and anticyclonic vorticity structures of the
barotropic flow. In contrast, O(1) Rossby number flows were
characterized by highly asymmetric barotropic vorticity distri-
bution with a dominance of cyclonic vortices over anticyclonic
ones. The barotropic coherent vortices at O(1) Rossby num-
bers were seen to be fewer in number and smaller in size. Ad-
ditionally, barotropic to baroclinic energy transfer was seen to
increase monotonically with Rossby number. The O(1)
Rossby number flows were in general characterized by a for-
ward energy flux for both the barotropic and baroclinic flow

and the turbulent energy transfers in the two-vertical-mode
system based on our present study is summarized in sche-
matics shown in Fig. 8.

The forward energy flux of the flow was also seen to mono-
tonically increase with increasing Rossby number. On parti-
tioning the domain based on the barotropic flow field into
vortex dominant regions, which were mostly regions inside
vortex cores, and strain-dominant regions, which consisted of
regions in the vortex peripheries, we found that the forward
energy flux of the flow was higher in strain-dominant regions,
away from vortex cores. Notably, these were also regions
where a major fraction of baroclinic flow was seen to be accu-
mulated at high Rossby numbers. Therefore, with increasing
Rossby numbers, the forward energy flux of the flow strength-
ens, with higher net flux in vortex peripheries, which goes
hand-in-hand with shrinking size of coherent vortices and in-
creased small-scale dissipation.

As explained earlier, throughout out this work, across dif-
ferent Rossby numbers, we forced and maintained large-scale
energy levels of the flow. Such a forcing scheme has no con-
trol over how the total barotropic and baroclinic energy levels
would change with different Rossby numbers. Nevertheless,
we observed that the barotropic and the baroclinic energy lev-
els were not changing appreciably with increasing Rossby
number, ensuring that the major fraction of the flow energy
was associated with the barotropic flow, while the baroclinic
flow was a small perturbation. The low-energy baroclinic flow
assisted in generating small-scale barotropic flow features and
facilitated the forward flux of the flow energy, the intensity of
which increased with increasing Rossby number. Although
multiple previous investigations based in idealized setups, re-
alistic ocean models, and in situ observations have found the
flow transition with a forward flux and increased small-scale
dissipation at submesoscales (Barkan et al. 2017; Taylor and
Straub 2016, 2020; Poje et al. 2017; Naveira Garabato et al.
2022), the low amount of unbalanced energy required to trig-
ger the transition is one of the highlights of this study. It is
striking that this behavior is contrary to the case in low
Rossby numbers, where large-scale coherent vortices remain
rugged and persistent unless unbalanced flow energy levels
significantly exceed balanced energy (Thomas and Yamada
2019; Thomas and Arun 2020; Thomas and Daniel 2020,
2021). In our present investigation, even though the baroclinic
flow remained a small perturbation to the total flow, the baro-
clinic flow did more and more damage to the barotropic flow
with increasing Rossby number.

To fully appreciate the significance of the last line above,
it is worth comparing our results with that of Dritschel and
Viudez (2006), who integrated the Boussinesq equations en-
forcing balanced constraints by filtering off unbalanced com-
ponents of the flow during small time intervals of the
numerical integration (a procedure that they call “optimal
balance”). By forcibly enforcing balance constraints on the
flow, thereby removing the unbalanced energy in the system,
they observed that the generic features of balanced flow holds
even when Rossby number reaches O(1) values. In other
words, balanced flow can be made to retain its features even
at high Rossby numbers, if the unbalanced energy levels are
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enforced to be zero. To set up a similar experiment in our
model, we integrated (1) with Ro5 1, forcibly setting the bar-
oclinic flow to be zero after every few time steps of numerical
integration. Figure 9 shows the barotropic vorticity field for
such an integration with Roeff 5 3.49: observe the appearance
of cyclonic and anticyclonic large-scale coherent vortices. Of
course, although our procedure of filtering off baroclinic flow
along with time integration is a crude attempt to mimic the
more rigorous optimal balance enforcing procedure of Drit-
schel and Viudez, a comparison between Figs. 9 and 1e drives
the main message home: both these flows have similar O(1)
Rossby numbers, but the presence of a weak baroclinic flow
makes a significant difference when compared to the situation
with no baroclinic flow. In O(1) Rossby number flows, even a
small unbalanced energy can severely damage the large-scale
coherent flow structures.

A reader with interdisciplinary interests will find it intrigu-
ing to know that the result mentioned above has similarities
with laminar to turbulence transition in pipe flows. Experi-
mental investigations exploring pipe flows have found that the
perturbation energy required to trigger transition from laminar
to turbulent state decreases proportionally with increasing
Reynolds number. Alternatively, the same perturbation magni-
tude can speed up the transition to turbulence and inflict more
damage to the laminar flow at higher Reynolds numbers (Hof
et al. 2003; Eckhardt et al. 2007). Although our work was not
capturing a laminar to turbulent transition, the transition seen
in the barotropic flow in the left column of Fig. 1 is a change

from a well-organized flow with most of its energy in large-
scale coherent vortices to a flow with relatively higher energy
content in incoherent small-scale structures and with a strong
forward energy flux. Therefore, although flows in pipe and the
flows we investigated in this work in connection to geophysical

FIG. 8. Schematics of turbulent interactions between (top) a high-energy barotropic flow and (bottom) an energeti-
cally weak high-baroclinic flow. The blue arrows indicate energy transfer across scales, with wavenumber (k) increas-
ing from left to right. The red arrows indicate energy transfer between modes. (a) The energy transfers in the low
Rossby number regime. The barotropic and baroclinic flows exhibit inverse and forward energy fluxes, respectively,
along with a weak energy transfer from barotropic to baroclinic mode as indicated by the dashed red arrows. (b) The
turbulent dynamics in the O(1) Rossby number regime. The baroclinic flow extracts significantly more energy from
the barotropic flow when compared to the low Rossby number case, as shown by the solid red arrows, undergoes a
forward energy flux, and actively catalyzes a forward energy flux of the barotropic flow. Therefore, even though the
baroclinic flow is an energetically weak flow component, in O(1) Rossby number regimes it can insinuate a forward
barotropic energy flux.

FIG. 9. Barotropic vorticity field with Roeff 5 3.49, obtained by
integrating (1) with baroclinic flow forcibly filtered off along with
time integration.
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turbulence in the ocean are poles apart, we may draw a qualita-
tive analogy between the results in the two setups. The same
small, unbalanced perturbation can cause more damage to the
flow at higher Rossby numbers in geophysical turbulence and
at higher Reynolds numbers in pipe flows.

We conclude by pointing out a specific ramification of the
results of our study. Our goal in this paper was to examine
how a low-energy high-baroclinic mode, excited on top of an
energetic barotropic mode, will affect the flow dynamics
across different Rossby numbers. Intriguingly, we found that
at O(1) Rossby numbers even low-energy, high-baroclinic
flows can induce a forward energy flux and severely enhance
dissipation of the flow energy. In the ocean, a wide range of
perturbations can generate high-baroclinic mode disturbances.
Such unbalanced ageostrophic components, which include in-
ertial oscillations and near-inertial waves, are generated when
geostrophic eddies interact with lateral boundaries, topo-
graphic features, or as a result of spontaneous emission by high
Rossby number vortices and fronts (Liang and Thurnherr
2012; Alford et al. 2013; Clément et al. 2016). From the point
of view of loss of balance, balanced coherent structures gener-
ating ageostrophic flow components is considered to be a
mechanism by which the balanced flow loses energy, the en-
ergy being “lost” from balanced flow to the newly excited un-
balanced flow component. Despite such mechanisms being
hypothesized to be an energy sink for balanced structures, the
energy levels of the newly excited imbalance are usually small,
compared to the mean or balanced energy. In connection
to this, recall that our findings point out that high-baroclinic
perturbations in the O(1) Rossby number regime could irre-
versibly modify coherent vortices and enhance small-scale dis-
sipation. Therefore, in addition to balanced structures’ energy
loss via the direct generation of unbalanced flow components,
the newly generated unbalanced flow could feed back on the
balanced structures and could potentially assist in the dissipa-
tion of the balanced structures that generated them. In other
words, at O(1) Rossby numbers, newly excited unbalanced
flow could do more damage to the structures that gave birth to
them, than simply being a direct energy sink for the balanced
coherent structures. We speculate that this feedback of unbal-
anced ageostrophic flow could play a role in dissipating bal-
anced flow energy in localized high Rossby flow regions of the
world’s oceans.

Data availability statement. The datasets used for this work
can be downloaded from https://zenodo.org/record/6673261.

APPENDIX

Forcing Scheme

Here we will describe the details of the forcing scheme
used to enforce constant energy at large scales of the flow.
The forcing scheme on the barotropic flow can be repre-
sented in spectral space as

ĉ
(n11)
k 5 ĉ

(n)
k 1 a(n)exp(iu(n)k ), (A1)

where a(n)exp(iu(n)k ) is the forcing term and ĉ
(n)
k and ĉ

(n11)
k

are the streamfunction fields before and after the forcing is
implemented. At every iteration the phase u(n)k ∈ [0, 2p) is
randomly chosen. Our goal is to find the amplitude a(n) ∈ R

that will ensure constant energy at large scales. From (A1)
we have

(kĉ(n11)*
k )(kĉ(n11)

k ) 5 [kĉ(n)*
k 1 ka(n)exp(2 iu(n)k )]

3 [kĉ(n)
k 1 ka(n)exp(iu(n)k )] (A2a)

⇒ k2|ĉ(n11)
k |2 5 k2|ĉ(n)

k |2 1 k2a(n)2 1 k2a(n)ĉn
kexp(2iu(n)k )

1 k2a(n)ĉn*
k exp(iu(n)k ) (A2b)

Above, the * denotes the complex conjugate. We sum the
above expression from k . 0 to k 5 kf, since k ∈ (0, kf] is
the forced band of wavenumbers, to get∑

k∈(0, kf ]
k2|ĉ(n11)

k |2 5 ∑
k∈(0, kf ]

k2|ĉ(n)
k |2 1 a(n)2

∑
k∈(0,kf ]

k2

1 a(n)
∑

k∈(0, kf ]
k2[ĉ(n)

k exp(2iu(n)k )

1 ĉ
(n)*
k exp(iu(n)k )]: (A3)

The left-hand side term above denotes the barotropic en-
ergy in the band (0, kf] after the forcing scheme is imple-
mented and the first term on the right-hand side above
denotes the barotropic energy in the same wavenumber band
before the forcing scheme is implemented. These two expres-
sions should be equal to maintain constant total energy in
the forced wavenumber band. Equating and canceling these
terms and further simplification of (A3) gives us

a(n) 5 2
∑

k∈(0, kf ]
k2[ĉ(n)

k exp(2iu(n)k ) 1 ĉ
(n)*
k exp(iu(n)k )]

/ ∑
k∈(0,kf ]

k2:

(A4)

Above expression gives us the amplitude required in the
forcing expression (A1) to maintain constant barotropic en-
ergy in the forced wavenumber band k ∈ (0, kf]. We used
the same forcing strategy as above to maintain constant en-
ergy in the inertial oscillation mode of the baroclinic flow.
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