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An amplitude equation for surface gravity wave-topography interactions
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We derive an amplitude equation that captures the effect of small but arbitrary topog-
raphy on small-amplitude surface gravity waves. The robustness of this reduced model is
demonstrated by numerical simulations that compare it with the fully nonlinear water wave
equations. The amplitude equation is seen to accurately capture intricate and complex wave
dynamics, compared with the fully nonlinear equations, while being much faster than the
latter. Consequently, the model offers great potential for various surface wave-topography
interaction investigations, especially when a large number of simulations are needed to
obtain wave statistics, a process that is much slower if attempted using the full set of
equations.
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I. INTRODUCTION

Surface gravity waves, primarily generated by atmospheric winds, are ubiquitous in the world’s
oceans. While in deep water, the ocean floor has a negligible effect on these waves. However, as
they travel towards the shore, the topographic features of the seabed play an important role in
modulating the waves, resulting in refraction, diffraction, reflection, and scattering of the waves. The
surface wave-topography interaction problem is one that has motivated research interests in multiple
interdisciplinary scientific communities. Topographic features can invoke resonant interactions
between surface waves, popularly known as Bragg resonance, which transfers energy between
different waves [1–3]. This can result in reflection or deflection of waves away from shores [4–8],
which is of interest to coastal engineers as a means to protect shores. Furthermore, wave dynamics
play an important role in shaping topographic features such as sand bars and ripples near the
coast [9–11], a phenomenon that has intrigued coastal geographers and geomorphologists. From
a technological point of view, the abundance of wave energy near the coast makes it a promising
source of renewable energy [12,13]. However, the widespread nature of wave energy makes it
difficult to extract efficiently. Recently, there has been a growing interest in designing bottom
architectures that focus the wave field to enhance wave energy harvesting [14–17].

Given the wide range of scientific interests involving wave-topography interactions, mathemat-
ical modeling of these interactions have been an active area of research in the past few decades.
Modeling surface wave-topography interactions is challenging, since the governing equations are
nonlinear and three-dimensional with unsteady boundary conditions on the free surface. When faced
with problems concerning strongly nonlinear interactions, such as wave steepening at relatively
large topography close to the surf zone leading to wave breaking and turbulent mixing [18,19],
one must utilize the full equations. However, away from the surf zone, there exists a large variety of
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scenarios where small amplitude waves interact with small amplitude topography in the form of sand
bars, ripples, and coral reefs (see observations reported in Refs. [20–23] and references therein). In
these scenarios, it is highly desirable to have access to simpler mathematical models that faithfully
capture the essential features of the interaction. A wide range of reduced models have been proposed
for the wave-topography interaction problem. Popular examples include the mild slope equation,
which assumes a small slope for the bottom topography, and its various improvements [24–27],
ordinary differential equations for the interaction of a few plane waves with simple sinusoidal
seabeds [4,7], and ray tracing or geometric optics applied to surface waves propagating over a slowly
varying topography, assuming a spatial scale separation between the wave field and topography
[23,28].

In spite of the variety of simple models derived in the past, amplitude equation models remain
completely unexplored for this problem. Amplitude equations are simple models with multiple
benefits over the reduced models discussed before, which include filtering out fast oscillations
allowing for larger time steps during numerical integration and not requiring spatial scale separation
between the wave and interacting field. For problems involving waves, amplitude models are
extremely useful in a variety of scenarios corresponding to wave-wave, wave-mean flow, and wave-
medium interactions. While much work has addressed nonlinear surface wave-wave interactions
with amplitude equations (see, for example, Refs. [1,29] and references therein), we are unaware of
any previous work that has attempted to derive an amplitude equation aimed at capturing the effect
of an arbitrary topography on surface waves. This sets the primary motivation for the present work.
We derive an amplitude equation that captures the evolution of a monochromatic (single frequency)
wave field interacting with a small amplitude but spatially arbitrary (i.e., spatially broadband)
topography. Notably, we do not assume any spatial scale separation between the wave field and
the topography, which makes the model ideal for capturing class I Bragg resonant interactions. We
establish the robustness of the new model by numerically comparing it with the fully nonlinear
surface wave equations. Given the simplicity of the new model and its capability to capture
extreme wave-topography interactions as demonstrated by our numerical simulations, we believe
the amplitude equation will have a wide range of applications in the future, especially in the ocean
engineering community where fast and efficient numerical integration of the governing equations is
a priority.

The plan for this paper is as follows: we derive and discuss the new amplitude equation in Sec. II,
present a series of numerical experiments that test the model against the fully nonlinear equations
in Sec. III, and summarize our findings in Sec. IV.

II. A NEW AMPLITUDE EQUATION

The full three-dimensional nonlinear equations governing the dynamics of irrotational water
waves encountering an arbitrary topography are

�φ + ∂2φ/∂z2 = 0, (1a)

z = η(x, t ) : ∂φ/∂t + gη + 1
2

[
(∇φ)2 + (∂φ/∂z)2

] = 0, (1b)

∂η/∂t − ∂φ/∂z + ∇φ · ∇η = 0, (1c)

z = −H + ζ (x) : ∂φ/∂z = ∇ζ · ∇φ, (1d)

where η and ζ denote the time evolving free surface displacement and the stationary-in-time bottom
topography with respect to the fluid level at z = 0 and z = −H , respectively. The fluid exhibiting
potential flow in the region −H + ζ � z � η with no vorticity is expressed by Eq. (1a), φ being
the three-dimensional potential whose gradient gives the velocity field. From Bernoulli’s equation

124802-2



AN AMPLITUDE EQUATION FOR SURFACE GRAVITY WAVE- …

we get the dynamic condition Eq. (1b) that ensures continuity of pressure across the free surface,
Eq. (1c) expresses the condition that the top free surface remains a material surface, and Eq. (1d)
imposes that the velocity normal to the bottom boundary must vanish, since the bottom topography
is impenetrable. Finally, g is the acceleration due to gravity, x = (x, y), ∇ = (∂/∂x, ∂/∂y) and
� = ∂2/∂x2 + ∂2/∂y2.

We assume small amplitude waves, i.e., a � 1, where a denotes the wave amplitude. Con-
sequently, we drop the nonlinear terms that arise in Eqs. (1b) and (1c). We further assume
asymptotically small bottom topography, i.e., ζ/H ∼ O(ε) � 1, where ε is the small parameter
in the problem. Thus, we obtain the linearized interaction equations:

�φ + ∂2φ/∂z2 = 0, (2a)

z = 0 : ∂φ/∂t + gη = 0,

∂η/∂t − ∂φ/∂z = 0, (2b)

z = −H : ∂φ/∂z = ε∇ · (ζ∇φ), (2c)

where Eqs. (2b) and (2c) follow from the Taylor series expansion of Eqs. (1b)–(1d) with respect to
z = 0 and z = −H . Noting that g and H are two parameters that appear in the above equations,
we can use them to construct length, velocity, and timescales H ,

√
gH , and

√
H/g. Hereafter,

we shall treat Eq. (2) as the system obtained after nondimensionalizng with these scales. In this
sense, g = H = 1, although we retain them in the equations throughout for clarity. Concomitantly,
ζ is O(1) henceforth, with ε in Eq. (2c) indicating the smallness of the topography. Note that the
approximations we used above to obtain Eq. (2) sets us in the regime of small amplitude waves
interacting with asymptotically small bottom topography with the appropriate scaling a � ε � 1.

In the absence of topography, i.e., in the limit ε = 0, Eq. (2) admits exact plane wave solutions
of the form

φ(x, z, t ) = cosh(k0(z + H ))

cosh(k0H )
ei(k0·x−ω0t ) + c.c., (3a)

where

ω0 =
√

gk0 tanh(k0H ), (3b)

and c.c. denotes complex conjugate. Observe that the wave frequency ω0 depends only on the
magnitude of the wave-number vector, k0 = |k0|, and not on its orientation, and similarly for the
vertical structure in Eq. (3a). We use Eq. (3a) as the basis for our asymptotic solution, which holds
to a good approximation for small but non zero topography (ε � 1). The topography catalyzes class
I Bragg resonant interactions which result in energy transfer from an incident wave to wave modes
of the same frequency, spatial scale, and vertical structure, but with varying horizontal directions.
Consequently, the general solution will involve a collection of wave modes with different wave
numbers and may be represented by a generalization of Eq. (3a) as

φ(x, z, t, T ) = e−iω0t
cosh[k0(z + H )]

cosh(k0H )
A(x, T ) + c.c. (4)

Here A represents the wave amplitude, containing the horizontal structure of the wave field, and is
expected to evolve on a slow timescale T = εt due to the smallness of the topography. Below we
derive an evolution equation for the wave amplitude.
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A. Derivation of the amplitude equation

Although surface wave evolution is governed by three-dimensional equations, wave propagation
is constrained to the horizontal plane, i.e., these waves do not exhibit propagation in the vertical
direction. The first step in deriving an amplitude equation for a monochromatic wave field
is separating the propagating horizontal part from the full three-dimensional field by vertical
averaging. We use Green’s identity to accomplish this, along the same lines as Refs. [26,30]. Setting
φ = f (z)ψ (x, t ) with f (z) = cosh[k0(z + H )]/ cosh(k0H ) and applying Green’s second identity
to the functions f and φ gives∫ 0

−H

(φfzz − f φzz)dz = [φfz − f φz]
0
−H . (5)

Using Eq. (2) in Eq. (5), we get∫ 0

−H

[fzzf (z)ψ + (�ψ )f 2(z)]dz = f (0)k0 tanh(k0H )ψ + f 2(0)

g

∂2ψ

∂t2
+ εf 2(−H )∇ · (ζ∇ψ ).

(6)

We simplify further using∫ 0

−H

f 2(z)dz = 1

2

[
H sech2(k0H ) + tanh(k0H )

k0

]
= ccg

g
, (7)

where c = ω0/k0 and cg = ω′
0(k0) represent the phase and group velocities, respectively. Thus, we

get an evolution equation for ψ :

∂2ψ

∂t2
+ ω2

0ψ − ccg

(
�ψ + k2

0ψ
) + εg

cosh2(k0H )
∇ · (ζ∇ψ ) = 0. (8)

Equation (8) is a reduction of Eq. (2) that isolates the propagating part of the wave field by
removing the vertical dependence. We note that time step required for numerically integrating
the linear equations, Eqs. (8) and (2), is set by the need to capture fast oscillations of the wave
with time period 2π/ω0. However, the topographic interaction term is O(ε) and therefore would
modify the wave field by an O(1) amount on an O(1/ε) timescale. Consequently, straightforward
numerical integration of the equations to capture significant changes in the wave field induced by
the topography would require integrating up to timescales of O(1/ε) with small enough time steps
to resolve the fast oscillations, with time period 2π/ω0. We overcome this issue of requiring small
time steps to capture fast oscillations by implementing the method of multi-time-scale asymptotics
to derive an amplitude equation that filters the fast oscillatory part of the wave field, thus allowing
the usage of asymptotically larger time steps to track the effect of bottom topography on the
waves. For this purpose, we introduce a slow timescale T = εt and redefine time derivative as
∂/∂t → ∂/∂t + ε∂/∂T to rewrite the above equation as

∂2ψ

∂t2
+ ω2

0ψ − ccg

(
�ψ + k2

0ψ
) + ε

(
2

∂2ψ

∂t∂T
+ g

cosh2(k0H )
∇ · (ζ∇ψ )

)
+ ε2 ∂2ψ

∂T 2
= 0. (9)

We then expand ψ asymptotically as ψ = ψ0 + εψ1 + O(ε2). At leading order we get

∂2ψ0

∂t2
+ ω2

0ψ0 − ccg

(
�ψ0 + k2

0ψ0
) = 0. (10)

We write the solution of above equation as

ψ0 = A0(x, T )e−iω0t + c.c., (11)

which gives us

−ccg

(
�A0 + k2

0A0
) = 0. (12)
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Notice that unlike usual asymptotic approaches (see, for example, Ref. [31]), we do not write down
an exact solution to the leading order Eq. (10). Instead, we let the amplitude A0 posses an arbitrary
spatial structure, consistent with Eq. (12), which means that the spectrum of A0 can potentially
contain several Fourier modes with wave numbers of the same magnitude, so as to have the same
frequency, ω0. Any such collection of Fourier modes with the same wave-number magnitude will
exactly satisfy Eq. (12). Our goal is to derive an amplitude equation that can track the evolution of
a collection of such Fourier modes. We therefore do not impose a pre-determined spatial structure
on A0, but rather let it evolve based on the effect of topography on the wave field. This will be
accomplished by the inclusion of the topographic interaction term at the next order of asymptotics.
To derive an evolution equation for the wave amplitude, we modify Eq. (12) by setting

−ccg

(
�A0 + k2

0A0
) = ε�, (13)

where � is an O(1) quantity and will be evaluated at the next order of asymptotics. Such an
approach, of combining the leading order and next order terms to form a single equation, is known
as reconstitution [32] and has been successfully used for several asymptotic problems in recent
times—see, for example, Refs. [33–37]. The same technique was used by Refs. [38,39] for surface
wave problems (also see Ref. [29] for several other applications of this technique).

Continuing the asymptotic expansion, at O(ε) of Eq. (9) we get

∂2ψ1

∂t2
+ ω2

0ψ1 − ccg

(
�ψ1 + k2

0ψ1
)+ (�e−iω0t + c.c.) +

(
2

∂2ψ0

∂t∂T
+ g

cosh2(k0H )
∇ · (ζ∇ψ0)

)
= 0.

(14)

At this order we set

ψ1 = A1(x, T )e−iω0t + c.c. + NRT, (15)

where NRT above indicate non-resonant terms, since they have frequency different from ω0, but
necessarily contribute to the complete solution at O(ε). We substitute above expression for ψ1 in
Eq. (14), collect terms multiplied by e−iω0t and set them to zero, this being the solvability condition
for ensuring the absence of secular growth in the solution (see, for example, Ref. [29]), to obtain

� − ccg

(
�A1 + k2

0A1
) +

(
−2iω0

∂A0

∂T
+ g

cosh2(k0H )
∇ · (ζ∇A0)

)
= 0. (16)

Notice that in Eq. (16) we have an expression for �. We use this expression for � in Eq. (13), define
A = A0 + εA1, ignore O(ε2) terms and rearrange terms to get

∂A

∂T
− i

ccg

2εω0

(
�A + k2

0A
) + i

g

2ω0 cosh2(k0H )
∇ · (ζ∇A) = 0. (17)

The above equation is an amplitude equation for the evolution of the leading order wave field, where
the fast oscillatory part, e−iω0t has been removed, allowing us to focus better on the topographic
interaction via the final term. We conclude our derivation with one final step, proceeding along the
same lines as Refs. [34,36,37], that will improve the dispersive characteristics of Eq. (17).

The surface wave dispersion relationship, ω(k) = √
gk tanh(kH ), can be expanded in a Taylor

series about [k0, ω(k0)] to obtain

ω(k) = ω(k0) + (k − k0)ω′(k0) + (k − k0)2ω′′(k0) + · · · (18)

On the other hand, the reduced dispersion relationship of the amplitude equation is obtained by
using a plane wave solution of the form A = Ãei(k·x−�T ) in Eq. (17). This procedure gives us

�(k) =
(

ccg

2εω0

)(
k2 − k2

0

)
. (19)

124802-5



JIM THOMAS AND RAY YAMADA

We observe that �(k0) = 0 since �(k) captures the deviation from the leading frequency ω0 =
ω(k0), as a consequence of fast phase removal in Eqs. (11) and (15). Furthermore, we have
�′(k0) = cg/ε = ω′(k0)/ε (note that the appearance of ε is due to the usage of “slow time,” T ).
However, we find that �′′(k0) = ccg/εω0 �= ω′′

0 (k0)/ε. This means that the reduced model Eq. (17)
can approximate the series expansion of full dispersion relationship given in Eq. (18) only up
to O(k − k0), failing to capture O[(k − k0)2] effects. We overcome this limitation of amplitude
equation to obtain an improved model capable of capturing second order wave-number effects in
the dispersion relationship.

Time differentiating Eq. (13), after setting A0 = A + O(ε), we get ∂/∂T (�A + k2
0A) = O(ε).

We multiply this with a yet-to-be-determined variable α and add this to Eq. (17), ignoring the
topographic interaction term temporarily, to get

∂

∂T

(
A + α

(
� + k2

0

)
A

) − i
ccg

2εω0

(
�A + k2

0A
) = 0. (20)

Substituting a plane wave solution to the above equation in the form A = Ãei(k·x−�T ) gives us the
dispersion relationship

�(k) =
(

ccg

2εω0

)
k2 − k2

0

1 + α
(
k2

0 − k2
) (21a)

⇒ �′(k0) = cg

ε
and �′′(k0) = cg

ε

[
c

ω0
+ 4αk0

]
. (21b)

Note that we recover Eq. (19) from Eq. (21a) in the limit α = 0. To improve the dispersive features
of the amplitude equation up to O[(k − k0)2], we set �′′(k0) = ω′′

0 (k0)/ε. This gives us a unique
value for α: α = [k0ω

′′(k0) − ω′(k0)]/[4k2
0ω

′(k0)], using which we get the improved amplitude
equation:

[
1 + α

(
� + k2

0

)]∂A

∂T
− iβ

(
� + k2

0

)
A + iγ∇ · (ζ∇A) = 0, (22)

where

α = 1

4k2
0ω

′(k0)
(k0ω

′′(k0) − ω′(k0)), β = ω′
0(k0)

2k0ε
, and γ = g

2ω0(k0) cosh2(k0H )
,

whose dispersive characteristics are better than that of Eq. (17), since it approximates the full
dispersion relationship in Eq. (18) up to O[(k − k0)2]. We tested the improvement of Eq. (22) over
Eq. (17) with a wide range of numerical simulations, corresponding to those discussed in Sec. III,
comparing both amplitude equations against the full set of Eqs. (1) and the linear Eqs. (2) and (8).
The modified Eq. (22) was seen to perform consistently better than Eq. (17) (see Appendix B for an
example), these results being similar to those shown in Figs. 6 and 10 in Ref. [34].

B. Features of the amplitude equation

We now examine some of the features of the new amplitude equation model, Eq. (22). Observe
that the final term is the topographic interaction term, which by triadic interaction with pre-
existing wave modes would generate new wave numbers in the spectrum of A, thus changing
its spatial structure. A simple reduction of the amplitude equation is achieved for the case of
two plane waves interacting with a sinusoidal topography. Consider two plane waves given by
A = A1e

ik1·x + A2e
ik2·x [the plane wave form for the potential is obtained by substituting this in

Eq. (4)] with k1 = k2 = k0, so that they possess the same frequency, ω0(k0), propagating over
a simple topography of the form ζ = ζ0e

ikb ·x + c.c., where ζ0 is the constant amplitude of the
topography with wave number kb such that k2 = k1 + kb. Truncating Eq. (22) to the above two
wave modes, noting that for this special case of resonant modes the term (� + k2

0 )A identically
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vanishes, we get the equations

dA1

dT
− iγ (k1 · k2)ζ ∗

0 A2 = 0,
dA2

dT
− iγ (k1 · k2)ζ0A1 = 0 (23)

The reduced model Eq. (23) illustrates how topography can passively induce energy transfer
between two plane waves with amplitudes A1 and A2. The exact analytical solution of the above
equations can be written down, the solutions being time-periodic oscillations with a period that
depends on the value of ζ0. The interaction is energy preserving, i.e., |A1|2 + |A2|2 is a constant
independent of time, as can be easily shown using Eq. (23).

A further special simplification of the reduced model Eq. (23) is obtained by setting k2 = (k, 0),
kb = (2k, 0) and k1 = (−k, 0). In this example, a left going wave with wave number k1 is reflected
by topography with half the wavelength by generating a counterpropagating wave k2, which
demonstrates wave reflection by bars or ripples on beaches [4,7]. Note that an arbitrary spatially
broadband topography consists of many Fourier modes and cannot be represented by a single
Fourier mode as above. Consequently, considering the exact triadic resonant modes alone would
yield an extremely large number of equations similar to Eq. (23). This fundamental difficulty is
probably why an amplitude equation was not derived for this problem in the past. We used the
technique of combining reconstitution with multi-time-scale asymptotics to obtain an amplitude
equation, Eq. (22), in physical space, which essentially contains an assemblage of all possible exact
resonant equations of the form Eq. (23) in spectral space.

In addition to exactly resonant modes, i.e., Fourier modes that satisfy |k| = k0 with frequency
ω0, the amplitude Eq. (22) also captures the dynamics of near-resonant modes. A certain Fourier
mode k is near-resonant if |k| = k0 + δ, where δ is asymptotically small but nonzero. Consequently,
these near-resonant modes have frequencies slightly off the exact value of ω0 by an amount O(δ).
While the term (� + k2

0 )A, (note that although this term appears twice in the amplitude equation,
here and below we are referring to the term multiplied by β, and not the term associated with the
time derivative) vanishes for exact resonant modes, this term is non-zero for near-resonant modes,
the magnitude being O(δ), i.e., the amount by which the modes are off-resonant. Therefore, while
resonant modes will be strongly modified by topography as a result of the exact vanishing of the term
(� + k2

0 )A for these modes, near-resonant modes will be modulated to a lesser extent, the strength
of modulation being proportional to the smallness of δ. Finally, we note that the triadic interaction
term involving topography in the amplitude equation also generates non-resonant modes, i.e., modes
k that satisfy |k| − k0 ∼ O(1), for which (� + k2

0 )A is O(1). These modes will undergo almost no
modulation, in comparison to resonant and near-resonant modes.

We therefore observe that although resonant, near-resonant, and non-resonant modes are gener-
ated by the topographic triadic interaction term in the amplitude equation, the (� + k2

0 )A term acts
as a “selective filter” by vanishing exactly and nearly so for resonant and near-resonant modes and
thus promoting strong modulation of these modes, while blocking non-resonant modes and thereby
preventing their modulation. Strong modulation of resonant and near-resonant modes due to the term
(� + k2

0 )A being zero or nearly zero means that the amplitude equation can be integrated with larger
time steps, compared to Eqs. (2) or (8), while accurately capturing the evolution of resonant and
near-resonant modes – a strategy is to treat this term implicitly in numerical integrators. For various
simulations, corresponding to those discussed in Sec. III, we found that the amplitude equation
could be integrated with time steps roughly 1/ε larger than that used to integrate Eqs. (2) or (8). For
example, when ε = 0.1 a value we chose for numerical experiments presented in Sec. III, we were
able to integrate the amplitude equation with time steps almost 10 times larger than that used for in-
tegrating Eqs. (2) or (8). The newly derived amplitude Eq. (22) therefore serves as an optimal single
equation model, particularly set in physical space (and not in spectral space), that can be integrated
faster and conveniently while collectively tracking resonant and near-resonant wave modes.

We conclude this section by noting conservation laws associated with Eq. (22). As discussed
in Ref. [34], by multiplying the amplitude equation by A∗ and iA∗

T , and integrating over the
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whole domain, D, assuming vanishing boundary fluxes (for example, due to periodic or unbounded
domains) and taking the real part of the result, we get the following two conservation laws:

d

dT

∫
D

[(
1 + αk2

0

)|A|2 − α|∇A|2]dx = 0, (24a)

d

dT

∫
D

[
β
(
k2

0 |A|2 − |∇A|2) + γ ζ |∇A|2]dx = 0. (24b)

These conservation laws are valuable tools in testing validity of numerical integration schemes
used for Eq. (22). For the simulations discussed in Sec. III, we checked that above conservation
laws were satisfied by the numerical scheme up to a high degree of accuracy.

III. TWO APPLICATIONS OF THE AMPLITUDE EQUATION

We now examine the accuracy of the amplitude Eq. (22), by comparing it with the full
three-dimensional nonlinear Eq. (1) with a series of numerical simulations. The purpose of our
comparison of the amplitude equation with the full nonlinear set of equations is to demonstrate that
the amplitude equation, derived with the usage of asymptotics, is able to capture features that the
full set of equations would exhibit in the asymptotic regime, a point that is not obvious without
numerical experiments comparing the two models. Furthermore, our simulations were conducted
using physical setups which involve complex topographies that give rise to nontrivial surface
wave phenomena via wave-bottom interactions. Several previous investigators have conducted these
experiments with the full set of equations due to their complexity, but here we show that the new
model Eq. (22) can accurately and efficiently capture these phenomena.

Numerical integration of Eqs. (22) and (1) used pseudospectral codes with RK4 for time integra-
tion. High-order spectral method ([40,41], HOSM hereafter) was used to integrate Eq. (1). HOSM is
implemented by applying a converging Taylor series expansion to the governing equations, Eq. (1),
up to an arbitrary order of nonlinearity, M . HOSM is a very robust scheme with exponential
convergence achievable for problems where the wave steepness and bottom topography is small,
and has been successfully used for various wave-topography interaction problems [2,42,43]. In this
regard, HOSM is a state-of-the-art technique to integrate Eq. (1), particularly since we are operating
in the regime of asymptotically small wave amplitudes and bottom topography. The results reported
here are based on simulations with a spatial resolution of N = 512. Numerical convergence was
ensured by decreasing time steps and increasing spatial resolution so that only a small fraction of
domain integrated total wave energy was lost during the whole simulation. Although we found that
the nonlinear solutions were well captured by HOSM with M = 3, all the experiments in this section
were conducted with M = 4 for higher accuracy. To compare η obtained by integrating the full set
of equations in Eq. (1) with the amplitude Eq. (22), the amplitude field, A, was used in Eqs. (4) and
(2b) to obtain the asymptotic surface displacement field, η, as η = i(ω0/g)A + c.c.

All of our simulations were initialized with a single plane wave with k = (1, 0) corresponding
to a wavelength λ = 2π in a doubly periodic square domain of length 40λ and mean vertical depth
H = 1 (therefore, kH = 1). We chose the topographic features to have spatial scales comparable to
λ, thus preventing any spatial scale separation between wave and topography fields. The height of
the topography is set by ε, and we chose different values for ε ranging from 0.1 to 0.35. We used
a wave amplitude a = 0.01, so that even for our smallest value of ε, 0.1, the wave amplitude was
asymptotically small in comparison, ensuring that modulation of the solution by nonlinear wave
interactions was minimal, consistent with our initial assumption of small amplitude waves leading
to Eq. (2).

A. Surface wave scattering

The first experimental setup was designed to capture arbitrary scattering of an incident plane
wave by random bottom topography. We generated the random topography ζ for our simulation
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FIG. 1. (a) Three-dimensional depiction of surface gravity wave scattering, showing the free surface
displacement η computed from the amplitude Eq. (22) at the final time of integration t = 720 (100 wave
periods) and the random topography underneath for ε = 0.15. Incident waves enter the domain from the far
side and are scattered by the bottom topography, as can be seen by the irregular and elongated wave envelopes
(features highlighted in red) which have developed. Panels (b) and (c) show the scaled magnitude of the surface
wave field, |η|/a, and the Fourier spectrum of η at the same time, obtained by integrating the amplitude
equation. Panels (d) and (e) are the same quantities shown in (b) and (c), but obtained by integrating the
fully nonlinear Eqs. (1).

using a homogeneous isotropic Gaussian random field with correlation length λ. The topography
was doubly periodic spanning the whole domain and was scaled to have a maximum amplitude of
ε when integrating Eq. (1), but when integrating Eq. (22) we divided ζ by ε so that it is O(1). The
correlation length was chosen so that the topographic and wave fields are of the same spatial scale
to facilitate maximum attainable interaction within this set up.

Figure 1(a) shows the surface wave scattering that emerged after 100 wave periods for ε = 0.15.
The random topography is shown underneath the surface wave field in the schematic (a detailed
figure of the topographic field ζ is included in Appendix A and a movie showing the development
of the wave scattering is included in the Supplemental Material [44]). Although the wave field
is initially a single plane wave with kx = 1 and ky = 0, the topography promotes energy transfer
between various modes, as discussed above in Sec. II B, thus generating many new wavenumbers.
Consequently, the free surface displacement η develops irregular and elongated wave envelopes
highlighted in red. Figure 1(b) shows the scaled magnitude of the same surface wave field (|η|/a)
but zoomed in over a subdomain. The crests and troughs from the initial plane wave can be clearly
seen inside the larger wave envelopes. The scattering of energy to different modes becomes more
apparent when looking at the spectrum of η. Figure 1(c) shows the quantity |η̂(k)| computed from
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the amplitude model, where η̂(k) denotes the Fourier transform of η. At t = 0, due to the single
plane wave initialization, all of the energy is concentrated at just two points: k = (±1, 0). However,
with increasing time, the wave energy gets transferred to various modes on and around the k = 1
circle in spectral space, corresponding to resonant and near-resonant modes. Figures 1(d) and 1(e)
show the corresponding plots to Figs. 1(b) and 1(c) computed from the full nonlinear equations,
showing an excellent pointwise agreement with the amplitude equation.

B. Surface wave focusing

In contrast to the previous experiment where a random topographic field scatters and inhomog-
enizes an organized wave field, we now consider a physical set up consisting of specially designed
topography to focus waves onto a certain region. This experimental setup was inspired by questions
regarding the efficient placement of wave energy conversion devices along coasts in an attempt to
harvest renewable energy from waves [13]. Since surface waves are spread out across large areas,
localizing the wave energy through focusing can improve the efficiency of wave energy extraction,
by having fewer wave energy conversion devices in designated locations. From an engineering point
of view, the challenge is the optimal design of topography to achieve wave focusing, which crucially
depends on numerically integrating the wave-topography interaction equations. The fast integration
achieved by the amplitude equation allows one to easily assess a large collection of designs in search
for an optimal solution.

We designed a topographic structure to achieve wave focusing following the theoretical and
experimental set up discussed in Ref. [14]—see Appendix A for the exact equations that were used
to construct the topography. The topography thus constructed occupies 1/16 of the domain and
acts as a “concave mirror” that redirects incident wave energy towards a focal point at the origin.
Figure 2(a) illustrates the setup of the simulation for the case ε = 0.15, showing a zoomed-in region
near the focal point. Starting from an initial plane wave of amplitude a, the wave crests that pass
through the focal point grow in height until reaching a maximum amplitude of 5a, which was seen
to be maintained after 15 wave periods. A movie illustrating the wave development can be found in
the Supplemental Material [44].

Figures 2(b)–2(e) compare the surface wave field η computed from the amplitude equation (top
row) and full nonlinear equations (bottom row) in both physical and spectral space. As in the case
of scattering, there is an excellent agreement between the two equations for focusing. The spectrum
shows that the modes that lie on and around the ring k = 1 become excited, having had all the initial
energy concentrated at k = (±1, 0).

C. Quantifying model performance

We now turn our attention to quantifying the differences between the amplitude equation and
the fully nonlinear equations for the two physical setups discussed before. A stringent metric to
compare the two models is computed by the pointwise difference between the wave fields generated
by the models. For this, we define the normalized root-mean-square (rms) error as

Erms =
(∫

B

(ηamp − ηNL)2 dx
/ ∫

B

η2
NL dx

)1/2

, (25)

where ηamp and ηNL denote η for the amplitude and the fully nonlinear equations, respectively, and
B is the region of interest over which the difference is computed. For the scattering experiment, B is
the entire spatial domain, while in the focusing experiments, B is a disk centered at the focal point
with radius 4λ.

Figure 3(a) shows Erms computed for the scattering (blue) and focusing (red) experiments
discussed in Figs. 1 and 2 as a function of time. For both of these experiments, we note that the
error remains O(ε), ε being 0.15 for these experiments. This is the order of error we expect based
on the technique of multi-scale asymptotics used to derive the amplitude equation. Recall that the
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FIG. 2. (a) Three-dimensional depiction of surface gravity wave focusing, showing the free surface
displacement η computed from the amplitude Eq. (22) at t = 152 (21.2 wave periods), a time of maximum
focusing after equilibration is reached with a focal amplitude of 5.0a. The topography ζ is shown underneath
and is shaped as a concave mirror designed to focus the incident waves (entering from the right side) at
the center of the domain. The focal point is indicated by the red peak at the center. Panels (b) and (c) show the
amplification η/a and the spectrum of η, while (d) and (e) are the same quantities obtained by integrating the
fully nonlinear Eqs. (1).

topographic interaction term in Eq. (2) is O(ε) and therefore negligible for a few wave periods.
However, on 1/ε timescale, corresponding to T ∼ O(1), this weak term is capable of changing the
wave field by an O(1) amount. By using the method of multi-time-scale asymptotics, we ensure that
the amplitude equation captures the O(1) dynamics of the wave field up to O(1/ε) timescales, and
therefore succeeds in maintaining the error between the asymptotic model and the fully nonlinear
model to an O(ε) amount. However, we emphasize here that the error remains O(ε) even in the
presence of nonlinear terms that arise in Eq. (1) and on integrating for a much longer time than the
asymptotic estimate of a 1/ε timescale (observe especially the scattering experiment, which was
conducted for 100 wave periods), results that strengthen the validity of the amplitude equation.

To test the robustness of the amplitude equation, we used a series of scattering and focusing
experiments with all parameters the same as before except for ε which was varied from 0.1 to 0.35.
The scattering experiments were run to the same slow time T = 100 (or t = 100/ε). The focusing
experiments were run to 30 wave periods for the different values of ε because after around 15 wave
periods the focal maximum did not change and the simulations reached a quasi-steady state with
negligible changes in Erms. We therefore ran focusing experiments up to 30 wave periods for all
values of ε.
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FIG. 3. (a) The root-mean-square error Erms at time t for the scattering (blue) and focusing (red)
experiments shown in Figs. 1 and 2, respectively. (b) Effect of ε on Erms for a set of scattering (blue, dots)
and focusing (red, squares) experiments.

Figure 3(b) shows Erms versus ε for the set of scattering (blue, dots) and focusing (red, squares)
experiments. As expected, based on above discussion of error being O(ε), increasing ε is seen to
increase the error. From Fig. 3(b) we conclude that based on the strict metric of pointwise error,
values of ε around 0.15 is optimal, for error to remain below 20%. However, we note that pointwise
error metrics are very stringent, and often one is interested in efficient and fast calculation of various
wave statistics. We therefore ask: How large can ε be for wave statistics obtained from the two
models to agree within a reasonable degree? We attempt to answer this question by examining two
statistical quantities corresponding to the experiments described before.

We quantify the scattering of wave energy in spectral space, observed in Figs. 1(c) and 1(e) by
using an effective scattering angle, θe, defined as

θe =
(∫

R

θ2(k)|η̂(k)| dk
/ ∫

R

|η̂(k)| dk
)1/2

, (26)

which is the square root of the normalized second moment of |η̂| weighted by its position θ in
spectral space, where θ (k) = arctan(ky/kx ). The moment is computed over the region R, which we
take as the spectral ring 0.95 � k � 1.05 and is shown in degrees in Fig. 4(a) as a function of ε,
comparing the amplitude model (blue, dots) with the fully nonlinear equations (black, squares). The
angle θe is a bulk measure for the angular spread of energy in spectral space, in which a larger angle
indicates increased scattering. Observe that for all values of ε shown in Fig. 4(a), the measures of
θe in the amplitude and fully nonlinear equations agree strongly.

For the focusing experiments, a natural quantity of interest is the amplitude maximum obtained at
the focal point after equilibration. Figure 4(b) compares the maximum amplification obtained versus
ε for the amplitude (red, dots) and fully nonlinear equations (black, squares). The amplification is
computed as the average value of η/a for the points above the 75th percentile of the set of positive
points that lie within a 0.5λ radius of the focal point. The average was computed at the times when
the focal point maximum reaches a peak value and was then time averaged over the last 10 peaks.
There is again excellent agreement between the amplitude and fully nonlinear equations over the
full range of ε shown.

We also observed strong agreement between the models for various other statistical quantities,
such as the kurtosis of η (figure not shown). We therefore conclude that from a practical point of
view, wave statistics are very well predicted by the amplitude equation even for relatively large
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FIG. 4. (a) Effect of ε on effective scattering angle θe (degrees) and comparison between amplitude
Eq. (22) (blue, dots) and fully nonlinear Eqs. (1) (black, squares) for scattering experiments. (b) Effect of ε

on amplification and comparison between amplitude equation (red, dots) and fully nonlinear equations (black,
squares) for focusing experiments. (See text for definitions of θe and amplification.)

topographies, for ε up to 0.35. Consequently, the new model would be very useful in obtaining
wave statistics based on a large ensemble of simulations, a process that can be very expensive if
attempted with the full set of equations.

IV. DISCUSSION

In this paper we introduced a new amplitude equation that captures the effect of small but
spatially arbitrary bottom topography on monochromatic small amplitude surface gravity waves.
Notably, the model does not require a spatial scale separation between the waves and the topography,
nor restricts the wave field to a few wave modes, as has been the case with several previous popular
models. The amplitude equation, being a single equation model, is an ideal simple asymptotic
model for various applications. The fast wave oscillations are filtered out in the amplitude equation,
thus allowing larger time steps to capture the slow modulation of the wave field. This results in
considerable savings in the time required for numerical integration.

An important achievement of this paper is the demonstration that the amplitude equation in its
regime of operation agrees very well with the fully nonlinear water wave equations, as was shown
by our numerical simulations. Consequently, one may use the amplitude equation for various small
amplitude wave-topography interaction problems, where the full set of equations have been used
in the past. For instance, Ref. [14] integrated the full set of nonlinear equations to design specific
topography to focus a monochromatic wave field. As seen in our simulation results presented in
Sec. III, the procedure can be carried out inexpensively by integrating the amplitude equation.
The amplitude equation can be particularly useful when a large number of simulations are needed,
especially from an engineering point of view, to optimize wave focusing topographies, for example.

As already pointed out before, the amplitude equation can be integrated with time steps O(1/ε)
larger than that used to integrate the linear equations, the latter being required to track fast wave
oscillations to obtain an accurate solution. Since our simulations show that the amplitude equation
can substitute the full set of equations in the small wave amplitude regime, it is natural to ask: How
fast can the amplitude equation be integrated, compared to the full set of Eqs. (1)? To compare the
speed-up obtained by using the amplitude equation, we checked the time taken for both models to
attain the scattered wave field shown in Fig. 1. We chose the scattering experiment for this test rather
than the focusing experiment due to the wider spectral distribution of energy in the wave modes in
the former case. The base solution was a highly accurate solution of Eq. (1) obtained using HOSM
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with M = 4. We then used the amplitude equation and Eq. (1) using HOSM with M = 3 to generate
solutions for the speed test. Note that M = 3 is the minimal order at which the effects of higher order
resonances and nonlinear interactions appear in the numerical solution of Eq. (1). In this sense, the
M = 3 solution of Eq. (1) using HOSM serves as the least expensive nonlinear solution, which was
also numerically converged—we found that the deviation of this solution from M = 4 solution was
minimal, similar to that seen in previous investigations (see, for example, Tables 1–3 in Ref. [2]
and their discussion). Within this set up, the amplitude equation and HOSM with M = 3 were
integrated with the largest time steps possible so that Erms computed for both of these approximate
solutions with respect to the base solution was kept less than 20% at all times (the simulations were
performed with two Intel(R) IvyBridge 3.00 GHz CPUs). For ε = 0.15, the amplitude equation was
seen to integrate 96.5 times faster than Eq. (1) integrated using HOSM with M = 3. In addition
to the speedup obtained due to removal of fast oscillations, the amplitude equation, being a single
equation model, can be integrated in shorter time than the full set of equations integrated using
HOSM which require time stepping of multiple variables.

Amplitude equation models for nonlinear surface wave-wave interactions have been extremely
popular due to their inherent simplicity and ease of numerical integration (see, for example,
Refs. [1,29] and references therein). Furthermore, amplitude equations have a significant advantage
over more complex models when multiple realizations of the solution are needed to calculate various
wave statistics—similar to the variables presented in Fig. 4. It is the lack of such models for
wave-topography interactions that motivated this work. Given the simplicity and ease of numerical
integration, we hope that this new model will benefit a wide scientific community in future.
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APPENDIX A: MATHEMATICAL CONSTRUCTION OF BOTTOM TOPOGRAPHY

The bottom topography used for numerical experiments discussed in Sec. III are shown in Fig. 5.
The top row shows the three-dimensional depiction of ζ for the scattering and focusing experiments
while the bottom row shows the corresponding top views.

For the scattering experiments, the bottom topography ζ , shown in Figs. 5(a) and 5(c) was
generated from a Gaussian random field on a torus (for double periodicity) with correlation length
λ. ζ was made to have zero mean and was scaled so that its maximum height was ε.

For wave focusing experiments, we constructed a “concave mirror” topography following the
procedure discussed in Ref. [14]. We now derive the appropriate mathematical expression for the
topography used in the numerical experiments.

Consider a wave with wave number k1, pointing in the positive x direction, interacting with a
topography and thus resulting in the formation of a new wave with wave number k2. Since both
waves should have same wave-number magnitude to satisfy the resonance condition, we have k1 =
k2, which can be used to write k2 = (−k1 cos ϑ,−k1 sin ϑ ), where ϑ = tan−1(y/x), for an arbitrary
point (x, y). The topographic wave number, kb, is then given by their difference:

kb = k2 − k1 = [−k1(1 + cos ϑ ),−k1 sin ϑ]. (A1)

To obtain the topographic field ζ (x, y) from kb, we first define the vector field nb(x, y) to be
perpendicular to and of equal magnitude as kb(x, y), where

nb = k1[sin ϑ,−(1 + cos θ )] = k1

[
y√

x2 + y2
,−

(
1 + x√

x2 + y2

)]
. (A2)
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FIG. 5. Topographic field ζ used for the scattering experiments shown in a three-dimensional depiction (a)
and from directly overhead (c). The colors shown in (c) are for the case with ε = 0.15, corresponding to that
used in Fig. 1. The random topography stretches across the entire domain. Topographic field for the focusing
experiments with ε = 0.15 are shown in (b) and (d) corresponding to that used in Fig. 2. ζ was computed using
Eq. (A5) in the patch shown and is zero outside the patch. Only a subdomain is shown with the full domain
stretching from −20 to 20 in both x and y. The coordinates x and y are nondimensionalized by λ.

It is easily checked that nb is divergence free, i.e., ∂nbx/∂x + ∂nby/∂y = 0. Therefore, we can
define a scalar field �(x, y) such that nb = (∂�/∂y,−∂�/∂x). Straightforward integration of
Eq. (A2) gives

�(x, y) = k1
(
x +

√
x2 + y2

)
. (A3)

Note that contours of ζ and � coincide. Additionally, for any point (x, y), one can follow the
contours of � and find the corresponding point on the x axis. Mathematically, for any point
(x, y), x � 0, there is a unique point (X, 0), X � 0 such that �(x, y) = �(X, 0) (we restrict our
topography to the right half of the domain). Then, from Eq. (A3) we get

X = 1
2

(
x +

√
x2 + y2

)
. (A4)

We therefore construct a rippled topography by setting ζ = − sin(kbxX), where kbx = −2k1 is the
restriction of the x component of Eq. (A1) on the x axis. Finally, using Eq. (A4) in the above
expression for ζ , we get the expression for the topography used in the numerical experiments
discussed in Sec. III,

ζ (x, y) = sin
{
k1

(
x +

√
x2 + y2

)}
. (A5)

We note that our choice of the sine function for the topography Eq. (A5) is arbitrary, as one could
have used another oscillatory function such as cosine instead.

APPENDIX B: DISPERSIVE CORRECTION OF THE AMPLITUDE EQUATION

Here we present an example to demonstrate the improvement achieved by modifying the
dispersive characteristics of the first amplitude Eq. (17) to obtain our preferred reduced model
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FIG. 6. Top row: difference of η computed with (a) improved amplitude model Eq. (22) and HOSM and
(b) amplitude model Eq. (17) and HOSM, for the scattering experiment in Fig. 1. The panels shown here
correspond to the same time and spatial location as those shown in Figs. 1(b) and 1(d). Notice that the improved
model has relatively less pointwise errors. Bottom: root-mean-square error, Erms, versus time for the scattering
experiment in Fig. 1 when computed with the improved amplitude model Eq. (22) (blue) and amplitude model
Eq. (17) (black). Observe that the improved model accumulates less error over time compared to the original
model.

Eq. (22). For the scattering experiment described in Sec. III A, we compared both the amplitude
Eqs. (17) and (22) against the full set of Eqs. (1) simulated using HOSM. Figure 6 shows this
comparison for the case ε = 0.15, corresponding to the case presented in Fig. 1. The top panel
of Fig. 6 shows the pointwise error between the amplitude models and full set of equations,
while the bottom panel shows the time series of rms error. It is clear that the improved model
performs relatively better, with less pointwise and rms error at any given time during the simulation.
This improved performance of the model Eq. (22), based on numerical experiments, justifies the
modification of the dispersive characteristics of the original amplitude Eq. (17) to obtain Eq. (22).
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